Properties

Genus \(4\)
Quotient Genus \(0\)
Group \(C_3\times A_4\)
Signature \([ 0; 3, 3, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 4
Quotient Genus: 0
Group name: $C_3\times A_4$
Group identifier: [36,11]
Signature: $[ 0; 3, 3, 6 ]$
Conjugacy classes for this refined passport: 5, 8, 11

The full automorphism group for this family is $C_3\times S_4$ with signature $[ 0; 2, 3, 12 ]$.

Jacobian variety group algebra decomposition:$E\times E^{3}$
Corresponding character(s): 2, 11

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

4.36-11.0.3-3-6.1.1

  (1,13,25) (2,16,27) (3,14,28) (4,15,26) (5,17,29) (6,20,31) (7,18,32) (8,19,30) (9,21,33) (10,24,35) (11,22,36) (12,23,34)
  (1,36,19) (2,34,18) (3,33,20) (4,35,17) (5,28,23) (6,26,22) (7,25,24) (8,27,21) (9,32,15) (10,30,14) (11,29,16) (12,31,13)
  (1,8,9,4,5,12) (2,7,10,3,6,11) (13,20,21,16,17,24) (14,19,22,15,18,23) (25,32,33,28,29,36) (26,31,34,27,30,35)