Properties

Genus \(4\)
Quotient Genus \(0\)
Group \(C_3\times C_6\)
Signature \([ 0; 3, 6, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 4
Quotient Genus: 0
Group name: $C_3\times C_6$
Group identifier: [18,5]
Signature: $[ 0; 3, 6, 6 ]$
Conjugacy classes for this refined passport: 3, 14, 17

The full automorphism group for this family is $C_6\times S_3$ with signature $[ 0; 2, 6, 6 ]$.

Jacobian variety group algebra decomposition:$E\times E\times E\times E$
Corresponding character(s): 4, 10, 11, 12

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

4.18-5.0.3-6-6.2.1

  (1,2,3) (4,5,6) (7,8,9) (10,11,12) (13,14,15) (16,17,18)
  (1,16,4,10,7,13) (2,17,5,11,8,14) (3,18,6,12,9,15)
  (1,15,8,10,6,17) (2,13,9,11,4,18) (3,14,7,12,5,16)