Properties

Genus \(3\)
Quotient Genus \(1\)
Group \(S_3\)
Signature \([ 1; 3 ]\)
Generating Vectors \(9\)

Related objects

Downloads

Learn more about

Family Information

Genus: 3
Quotient Genus: 1
Group name: $S_3$
Group identifier: [6,1]
Signature: $[ 1; 3 ]$
Conjugacy classes for this refined passport: 3

The full automorphism group for this family is $D_6$ with signature $[ 0; 2, 2, 2, 6 ]$.

Jacobian variety group algebra decomposition:$E\times E^{2}$
Corresponding character(s): 1, 3

Generating Vector(s)

Displaying 9 of 9 generating vectors for this refined passport.

3.6-1.1.3.1.1

  (1,4) (2,6) (3,5)
  (1,2,3) (4,5,6)
  (1,2,3) (4,5,6)

3.6-1.1.3.1.2
  (1,6) (2,5) (3,4)
  (1,2,3) (4,5,6)
  (1,2,3) (4,5,6)

3.6-1.1.3.1.3
  (1,5) (2,4) (3,6)
  (1,2,3) (4,5,6)
  (1,2,3) (4,5,6)

3.6-1.1.3.1.4
  (1,3,2) (4,6,5)
  (1,4) (2,6) (3,5)
  (1,2,3) (4,5,6)

3.6-1.1.3.1.5
  (1,6) (2,5) (3,4)
  (1,4) (2,6) (3,5)
  (1,2,3) (4,5,6)

3.6-1.1.3.1.6
  (1,3,2) (4,6,5)
  (1,6) (2,5) (3,4)
  (1,2,3) (4,5,6)

3.6-1.1.3.1.7
  (1,5) (2,4) (3,6)
  (1,6) (2,5) (3,4)
  (1,2,3) (4,5,6)

3.6-1.1.3.1.8
  (1,4) (2,6) (3,5)
  (1,5) (2,4) (3,6)
  (1,2,3) (4,5,6)

3.6-1.1.3.1.9
  (1,3,2) (4,6,5)
  (1,5) (2,4) (3,6)
  (1,2,3) (4,5,6)

Display number of generating vectors: