Properties

Genus \(15\)
Quotient Genus \(0\)
Group \(C_4.A_5\)
Signature \([ 0; 2, 3, 20 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 15
Quotient Genus: 0
Group name: $C_4.A_5$
Group identifier: [240,93]
Signature: $[ 0; 2, 3, 20 ]$
Conjugacy classes for this refined passport: 3, 4, 15

Jacobian variety group algebra decomposition:$A_{2}^{2}\times E^{5}\times E^{6}$
Corresponding character(s): 3, 15, 17

Other Data

Hyperelliptic curve(s):No
Cyclic trigonal curve(s):No

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

15.240-93.0.2-3-20.1.1

  (1,10) (2,13) (3,27) (4,88) (5,180) (6,55) (7,150) (8,214) (9,165) (11,71) (12,173) (14,110) (15,96) (16,76) (17,139) (18,114) (19,233) (20,92) (21,57) (22,200) (23,155) (24,87) (25,34) (26,37) (28,64) (29,132) (30,79) (31,102) (32,238) (33,117) (35,95) (36,125) (38,158) (39,72) (40,52) (41,187) (42,162) (43,209) (44,68) (45,81) (46,224) (47,107) (48,63) (49,58) (50,61) (51,99) (53,84) (54,127) (56,190) (59,143) (60,77) (62,206) (65,235) (66,210) (67,161) (69,129) (70,176) (73,82) (74,85) (75,147) (78,175) (80,142) (83,191) (86,230) (89,211) (90,234) (91,113) (93,177) (94,128) (97,106) (98,109) (100,136) (101,228) (103,198) (104,166) (105,213) (108,221) (111,144) (112,124) (115,185) (116,140) (118,152) (119,203) (120,135) (121,130) (122,133) (123,195) (126,223) (131,239) (134,182) (137,163) (138,186) (141,225) (145,154) (146,157) (148,184) (149,204) (151,222) (153,237) (156,197) (159,192) (160,172) (164,188) (167,227) (168,183) (169,178) (170,181) (171,219) (174,199) (179,215) (189,201) (193,202) (194,205) (196,232) (207,240) (208,220) (212,236) (216,231) (217,226) (218,229)
  (1,107,144) (2,124,212) (3,178,101) (4,44,218) (5,99,226) (6,233,39) (7,237,46) (8,132,162) (9,215,229) (10,125,171) (11,96,97) (12,138,224) (13,129,95) (14,211,208) (15,30,209) (16,206,19) (17,207,126) (18,56,228) (20,194,28) (21,214,127) (22,31,213) (23,85,201) (24,217,83) (25,155,192) (26,172,236) (27,130,149) (29,147,202) (32,180,114) (33,239,205) (34,173,123) (35,72,145) (36,186,200) (37,177,71) (38,235,232) (40,230,43) (41,231,174) (42,80,204) (45,238,175) (47,61,225) (48,193,59) (49,203,240) (50,220,188) (51,82,197) (52,116,146) (53,195,154) (54,161,111) (55,165,118) (57,191,157) (58,221,75) (60,234,152) (62,187,184) (63,102,185) (64,182,67) (65,183,222) (66,128,156) (68,170,100) (69,190,223) (70,103,189) (73,227,216) (74,196,140) (76,164,98) (77,219,106) (78,113,159) (79,117,166) (81,143,109) (84,210,104) (86,139,136) (87,150,137) (88,134,91) (89,135,198) (90,176,108) (92,122,148) (93,142,199) (94,151,141) (105,167,181) (110,163,160) (112,158,115) (119,133,153) (120,169,131) (121,179,168)
  (1,111,67,134,4,229,179,130,3,228,190,129,2,236,160,137,7,224,186,125) (5,217,87,163,14,220,61,107,10,219,60,118,9,218,68,136,17,223,56,114) (6,72,95,69,126,240,119,237,150,24,191,21,54,144,47,141,222,168,215,165) (8,42,149,121,183,235,158,124,13,35,154,123,12,46,153,122,20,64,161,127) (11,106,171,36,22,105,170,44,88,113,175,32,18,101,169,135,211,110,172,37) (15,43,86,100,181,227,82,99,180,238,81,98,188,208,89,103,176,234,77,97) (16,233,55,152,90,221,49,207,139,230,52,157,83,226,51,156,94,225,50,164) (19,62,148,133,203,58,147,132,214,57,146,140,232,65,151,128,210,53,145,39) (23,189,198,120,239,117,30,96,71,93,174,216,167,213,102,48,143,45,78,192) (25,159,91,182,28,205,131,178,27,204,142,177,26,212,112,185,31,200,138,173) (29,193,63,115,38,196,85,155,34,195,84,166,33,194,92,184,41,199,80,162) (40,209,79,104,66,197,73,231,187,206,76,109,59,202,75,108,70,201,74,116)