Properties

Genus \(15\)
Quotient Genus \(0\)
Group \(F_8:C_3\)
Signature \([ 0; 3, 3, 6 ]\)
Generating Vectors \(2\)

Related objects

Downloads

Learn more about

Family Information

Genus: 15
Quotient Genus: 0
Group name: $F_8:C_3$
Group identifier: [168,43]
Signature: $[ 0; 3, 3, 6 ]$
Conjugacy classes for this refined passport: 3, 3, 5

Jacobian variety group algebra decomposition:$E\times A_{2}^{7}$
Corresponding character(s): 2, 7

Other Data

Hyperelliptic curve(s):No
Cyclic trigonal curve(s):No

Generating Vector(s)

Displaying 2 of 2 generating vectors for this refined passport.

15.168-43.0.3-3-6.1.1

  (1,57,113) (2,61,118) (3,63,116) (4,59,119) (5,62,114) (6,58,117) (7,60,115) (8,64,120) (9,73,145) (10,77,150) (11,79,148) (12,75,151) (13,78,146) (14,74,149) (15,76,147) (16,80,152) (17,89,121) (18,93,126) (19,95,124) (20,91,127) (21,94,122) (22,90,125) (23,92,123) (24,96,128) (25,105,153) (26,109,158) (27,111,156) (28,107,159) (29,110,154) (30,106,157) (31,108,155) (32,112,160) (33,65,129) (34,69,134) (35,71,132) (36,67,135) (37,70,130) (38,66,133) (39,68,131) (40,72,136) (41,81,161) (42,85,166) (43,87,164) (44,83,167) (45,86,162) (46,82,165) (47,84,163) (48,88,168) (49,97,137) (50,101,142) (51,103,140) (52,99,143) (53,102,138) (54,98,141) (55,100,139) (56,104,144)
  (1,110,152) (2,111,148) (3,107,147) (4,106,151) (5,109,149) (6,112,145) (7,108,146) (8,105,150) (9,70,128) (10,71,124) (11,67,123) (12,66,127) (13,69,125) (14,72,121) (15,68,122) (16,65,126) (17,86,160) (18,87,156) (19,83,155) (20,82,159) (21,85,157) (22,88,153) (23,84,154) (24,81,158) (25,102,136) (26,103,132) (27,99,131) (28,98,135) (29,101,133) (30,104,129) (31,100,130) (32,97,134) (33,62,168) (34,63,164) (35,59,163) (36,58,167) (37,61,165) (38,64,161) (39,60,162) (40,57,166) (41,78,144) (42,79,140) (43,75,139) (44,74,143) (45,77,141) (46,80,137) (47,76,138) (48,73,142) (49,94,120) (50,95,116) (51,91,115) (52,90,119) (53,93,117) (54,96,113) (55,92,114) (56,89,118)
  (1,80,165,2,79,166) (3,76,163,4,75,164) (5,74,167,6,73,168) (7,78,161,8,77,162) (9,96,141,10,95,142) (11,92,139,12,91,140) (13,90,143,14,89,144) (15,94,137,16,93,138) (17,112,117,18,111,118) (19,108,115,20,107,116) (21,106,119,22,105,120) (23,110,113,24,109,114) (25,72,149,26,71,150) (27,68,147,28,67,148) (29,66,151,30,65,152) (31,70,145,32,69,146) (33,88,125,34,87,126) (35,84,123,36,83,124) (37,82,127,38,81,128) (39,86,121,40,85,122) (41,104,157,42,103,158) (43,100,155,44,99,156) (45,98,159,46,97,160) (47,102,153,48,101,154) (49,64,133,50,63,134) (51,60,131,52,59,132) (53,58,135,54,57,136) (55,62,129,56,61,130)

15.168-43.0.3-3-6.1.2
  (1,57,113) (2,61,118) (3,63,116) (4,59,119) (5,62,114) (6,58,117) (7,60,115) (8,64,120) (9,73,145) (10,77,150) (11,79,148) (12,75,151) (13,78,146) (14,74,149) (15,76,147) (16,80,152) (17,89,121) (18,93,126) (19,95,124) (20,91,127) (21,94,122) (22,90,125) (23,92,123) (24,96,128) (25,105,153) (26,109,158) (27,111,156) (28,107,159) (29,110,154) (30,106,157) (31,108,155) (32,112,160) (33,65,129) (34,69,134) (35,71,132) (36,67,135) (37,70,130) (38,66,133) (39,68,131) (40,72,136) (41,81,161) (42,85,166) (43,87,164) (44,83,167) (45,86,162) (46,82,165) (47,84,163) (48,88,168) (49,97,137) (50,101,142) (51,103,140) (52,99,143) (53,102,138) (54,98,141) (55,100,139) (56,104,144)
  (1,95,156) (2,90,154) (3,96,157) (4,89,159) (5,91,160) (6,94,158) (7,92,153) (8,93,155) (9,111,132) (10,106,130) (11,112,133) (12,105,135) (13,107,136) (14,110,134) (15,108,129) (16,109,131) (17,71,164) (18,66,162) (19,72,165) (20,65,167) (21,67,168) (22,70,166) (23,68,161) (24,69,163) (25,87,140) (26,82,138) (27,88,141) (28,81,143) (29,83,144) (30,86,142) (31,84,137) (32,85,139) (33,103,116) (34,98,114) (35,104,117) (36,97,119) (37,99,120) (38,102,118) (39,100,113) (40,101,115) (41,63,148) (42,58,146) (43,64,149) (44,57,151) (45,59,152) (46,62,150) (47,60,145) (48,61,147) (49,79,124) (50,74,122) (51,80,125) (52,73,127) (53,75,128) (54,78,126) (55,76,121) (56,77,123)
  (1,111,145,7,105,151) (2,110,149,8,108,147) (3,106,150,5,112,148) (4,107,146,6,109,152) (9,71,121,15,65,127) (10,70,125,16,68,123) (11,66,126,13,72,124) (12,67,122,14,69,128) (17,87,153,23,81,159) (18,86,157,24,84,155) (19,82,158,21,88,156) (20,83,154,22,85,160) (25,103,129,31,97,135) (26,102,133,32,100,131) (27,98,134,29,104,132) (28,99,130,30,101,136) (33,63,161,39,57,167) (34,62,165,40,60,163) (35,58,166,37,64,164) (36,59,162,38,61,168) (41,79,137,47,73,143) (42,78,141,48,76,139) (43,74,142,45,80,140) (44,75,138,46,77,144) (49,95,113,55,89,119) (50,94,117,56,92,115) (51,90,118,53,96,116) (52,91,114,54,93,120)

Display number of generating vectors: