# Properties

 Genus $$15$$ Quotient Genus $$0$$ Group $$C_7:(C_7:C_3)$$ Signature $$[ 0; 3, 3, 7 ]$$ Generating Vectors $$1$$

# Related objects

## Family Information

 Genus: 15 Quotient Genus: 0 Group name: $C_7:(C_7:C_3)$ Group identifier: [147,5] Signature: $[ 0; 3, 3, 7 ]$
 Conjugacy classes for this refined passport: 2, 3, 8

The full automorphism group for this family is $C_7^2:S_3$ with signature $[ 0; 2, 3, 14 ]$.

 Jacobian variety group algebra decomposition: $A_{3}^{3}\times E^{3}\times E^{3}$ Corresponding character(s): 4, 6, 14

## Generating Vector(s)

Displaying the unique generating vector for this refined passport.

15.147-5.0.3-3-7.1.1

 (1,50,99) (2,54,101) (3,51,103) (4,55,105) (5,52,100) (6,56,102) (7,53,104) (8,64,127) (9,68,129) (10,65,131) (11,69,133) (12,66,128) (13,70,130) (14,67,132) (15,78,106) (16,82,108) (17,79,110) (18,83,112) (19,80,107) (20,84,109) (21,81,111) (22,92,134) (23,96,136) (24,93,138) (25,97,140) (26,94,135) (27,98,137) (28,95,139) (29,57,113) (30,61,115) (31,58,117) (32,62,119) (33,59,114) (34,63,116) (35,60,118) (36,71,141) (37,75,143) (38,72,145) (39,76,147) (40,73,142) (41,77,144) (42,74,146) (43,85,120) (44,89,122) (45,86,124) (46,90,126) (47,87,121) (48,91,123) (49,88,125) (1,137,80) (2,139,84) (3,134,81) (4,136,78) (5,138,82) (6,140,79) (7,135,83) (8,116,94) (9,118,98) (10,113,95) (11,115,92) (12,117,96) (13,119,93) (14,114,97) (15,144,59) (16,146,63) (17,141,60) (18,143,57) (19,145,61) (20,147,58) (21,142,62) (22,123,73) (23,125,77) (24,120,74) (25,122,71) (26,124,75) (27,126,72) (28,121,76) (29,102,87) (30,104,91) (31,99,88) (32,101,85) (33,103,89) (34,105,86) (35,100,90) (36,130,52) (37,132,56) (38,127,53) (39,129,50) (40,131,54) (41,133,51) (42,128,55) (43,109,66) (44,111,70) (45,106,67) (46,108,64) (47,110,68) (48,112,65) (49,107,69) (1,19,30,48,10,28,39) (2,20,31,49,11,22,40) (3,21,32,43,12,23,41) (4,15,33,44,13,24,42) (5,16,34,45,14,25,36) (6,17,35,46,8,26,37) (7,18,29,47,9,27,38) (50,68,79,97,59,77,88) (51,69,80,98,60,71,89) (52,70,81,92,61,72,90) (53,64,82,93,62,73,91) (54,65,83,94,63,74,85) (55,66,84,95,57,75,86) (56,67,78,96,58,76,87) (99,117,128,146,108,126,137) (100,118,129,147,109,120,138) (101,119,130,141,110,121,139) (102,113,131,142,111,122,140) (103,114,132,143,112,123,134) (104,115,133,144,106,124,135) (105,116,127,145,107,125,136)