Properties

Genus \(14\)
Quotient Genus \(0\)
Group \(C_2\times C_{13}:C_3\)
Signature \([ 0; 3, 6, 6 ]\)
Generating Vectors \(4\)

Related objects

Downloads

Learn more about

Family Information

Genus: 14
Quotient Genus: 0
Group name: $C_2\times C_{13}:C_3$
Group identifier: [78,2]
Signature: $[ 0; 3, 6, 6 ]$
Conjugacy classes for this refined passport: 4, 6, 6

The full automorphism group for this family is $C_2\times D_{13}:C_3$ with signature $[ 0; 2, 6, 6 ]$.

Jacobian variety group algebra decomposition:$E\times E\times A_{4}^{3}$
Corresponding character(s): 3, 4, 9

Generating Vector(s)

Displaying 4 of 4 generating vectors for this refined passport.

14.78-2.0.3-6-6.2.1

  (1,27,14) (2,36,17) (3,32,20) (4,28,23) (5,37,26) (6,33,16) (7,29,19) (8,38,22) (9,34,25) (10,30,15) (11,39,18) (12,35,21) (13,31,24) (40,66,53) (41,75,56) (42,71,59) (43,67,62) (44,76,65) (45,72,55) (46,68,58) (47,77,61) (48,73,64) (49,69,54) (50,78,57) (51,74,60) (52,70,63)
  (1,71,25,40,32,64) (2,67,15,41,28,54) (3,76,18,42,37,57) (4,72,21,43,33,60) (5,68,24,44,29,63) (6,77,14,45,38,53) (7,73,17,46,34,56) (8,69,20,47,30,59) (9,78,23,48,39,62) (10,74,26,49,35,65) (11,70,16,50,31,55) (12,66,19,51,27,58) (13,75,22,52,36,61)
  (1,73,19,40,34,58) (2,69,22,41,30,61) (3,78,25,42,39,64) (4,74,15,43,35,54) (5,70,18,44,31,57) (6,66,21,45,27,60) (7,75,24,46,36,63) (8,71,14,47,32,53) (9,67,17,48,28,56) (10,76,20,49,37,59) (11,72,23,50,33,62) (12,68,26,51,29,65) (13,77,16,52,38,55)

14.78-2.0.3-6-6.2.2
  (1,27,14) (2,36,17) (3,32,20) (4,28,23) (5,37,26) (6,33,16) (7,29,19) (8,38,22) (9,34,25) (10,30,15) (11,39,18) (12,35,21) (13,31,24) (40,66,53) (41,75,56) (42,71,59) (43,67,62) (44,76,65) (45,72,55) (46,68,58) (47,77,61) (48,73,64) (49,69,54) (50,78,57) (51,74,60) (52,70,63)
  (1,76,23,40,37,62) (2,72,26,41,33,65) (3,68,16,42,29,55) (4,77,19,43,38,58) (5,73,22,44,34,61) (6,69,25,45,30,64) (7,78,15,46,39,54) (8,74,18,47,35,57) (9,70,21,48,31,60) (10,66,24,49,27,63) (11,75,14,50,36,53) (12,71,17,51,32,56) (13,67,20,52,28,59)
  (1,67,24,40,28,63) (2,76,14,41,37,53) (3,72,17,42,33,56) (4,68,20,43,29,59) (5,77,23,44,38,62) (6,73,26,45,34,65) (7,69,16,46,30,55) (8,78,19,47,39,58) (9,74,22,48,35,61) (10,70,25,49,31,64) (11,66,15,50,27,54) (12,75,18,51,36,57) (13,71,21,52,32,60)

14.78-2.0.3-6-6.2.3
  (1,27,14) (2,36,17) (3,32,20) (4,28,23) (5,37,26) (6,33,16) (7,29,19) (8,38,22) (9,34,25) (10,30,15) (11,39,18) (12,35,21) (13,31,24) (40,66,53) (41,75,56) (42,71,59) (43,67,62) (44,76,65) (45,72,55) (46,68,58) (47,77,61) (48,73,64) (49,69,54) (50,78,57) (51,74,60) (52,70,63)
  (1,73,19,40,34,58) (2,69,22,41,30,61) (3,78,25,42,39,64) (4,74,15,43,35,54) (5,70,18,44,31,57) (6,66,21,45,27,60) (7,75,24,46,36,63) (8,71,14,47,32,53) (9,67,17,48,28,56) (10,76,20,49,37,59) (11,72,23,50,33,62) (12,68,26,51,29,65) (13,77,16,52,38,55)
  (1,68,21,40,29,60) (2,77,24,41,38,63) (3,73,14,42,34,53) (4,69,17,43,30,56) (5,78,20,44,39,59) (6,74,23,45,35,62) (7,70,26,46,31,65) (8,66,16,47,27,55) (9,75,19,48,36,58) (10,71,22,49,32,61) (11,67,25,50,28,64) (12,76,15,51,37,54) (13,72,18,52,33,57)

14.78-2.0.3-6-6.2.4
  (1,27,14) (2,36,17) (3,32,20) (4,28,23) (5,37,26) (6,33,16) (7,29,19) (8,38,22) (9,34,25) (10,30,15) (11,39,18) (12,35,21) (13,31,24) (40,66,53) (41,75,56) (42,71,59) (43,67,62) (44,76,65) (45,72,55) (46,68,58) (47,77,61) (48,73,64) (49,69,54) (50,78,57) (51,74,60) (52,70,63)
  (1,75,26,40,36,65) (2,71,16,41,32,55) (3,67,19,42,28,58) (4,76,22,43,37,61) (5,72,25,44,33,64) (6,68,15,45,29,54) (7,77,18,46,38,57) (8,73,21,47,34,60) (9,69,24,48,30,63) (10,78,14,49,39,53) (11,74,17,50,35,56) (12,70,20,51,31,59) (13,66,23,52,27,62)
  (1,76,23,40,37,62) (2,72,26,41,33,65) (3,68,16,42,29,55) (4,77,19,43,38,58) (5,73,22,44,34,61) (6,69,25,45,30,64) (7,78,15,46,39,54) (8,74,18,47,35,57) (9,70,21,48,31,60) (10,66,24,49,27,63) (11,75,14,50,36,53) (12,71,17,51,32,56) (13,67,20,52,28,59)

Display number of generating vectors: