Properties

Genus \(14\)
Quotient Genus \(0\)
Group \(C_2\times C_{13}:C_3\)
Signature \([ 0; 3, 6, 6 ]\)
Generating Vectors \(4\)

Related objects

Downloads

Learn more about

Family Information

Genus: 14
Quotient Genus: 0
Group name: $C_2\times C_{13}:C_3$
Group identifier: [78,2]
Signature: $[ 0; 3, 6, 6 ]$
Conjugacy classes for this refined passport: 3, 5, 5

The full automorphism group for this family is $C_2\times D_{13}:C_3$ with signature $[ 0; 2, 6, 6 ]$.

Jacobian variety group algebra decomposition:$E\times E\times A_{4}^{3}$
Corresponding character(s): 3, 4, 9

Generating Vector(s)

Displaying 4 of 4 generating vectors for this refined passport.

14.78-2.0.3-6-6.1.1

  (1,14,27) (2,17,36) (3,20,32) (4,23,28) (5,26,37) (6,16,33) (7,19,29) (8,22,38) (9,25,34) (10,15,30) (11,18,39) (12,21,35) (13,24,31) (40,53,66) (41,56,75) (42,59,71) (43,62,67) (44,65,76) (45,55,72) (46,58,68) (47,61,77) (48,64,73) (49,54,69) (50,57,78) (51,60,74) (52,63,70)
  (1,64,32,40,25,71) (2,54,28,41,15,67) (3,57,37,42,18,76) (4,60,33,43,21,72) (5,63,29,44,24,68) (6,53,38,45,14,77) (7,56,34,46,17,73) (8,59,30,47,20,69) (9,62,39,48,23,78) (10,65,35,49,26,74) (11,55,31,50,16,70) (12,58,27,51,19,66) (13,61,36,52,22,75)
  (1,59,38,40,20,77) (2,62,34,41,23,73) (3,65,30,42,26,69) (4,55,39,43,16,78) (5,58,35,44,19,74) (6,61,31,45,22,70) (7,64,27,46,25,66) (8,54,36,47,15,75) (9,57,32,48,18,71) (10,60,28,49,21,67) (11,63,37,50,24,76) (12,53,33,51,14,72) (13,56,29,52,17,68)

14.78-2.0.3-6-6.1.2
  (1,14,27) (2,17,36) (3,20,32) (4,23,28) (5,26,37) (6,16,33) (7,19,29) (8,22,38) (9,25,34) (10,15,30) (11,18,39) (12,21,35) (13,24,31) (40,53,66) (41,56,75) (42,59,71) (43,62,67) (44,65,76) (45,55,72) (46,58,68) (47,61,77) (48,64,73) (49,54,69) (50,57,78) (51,60,74) (52,63,70)
  (1,62,37,40,23,76) (2,65,33,41,26,72) (3,55,29,42,16,68) (4,58,38,43,19,77) (5,61,34,44,22,73) (6,64,30,45,25,69) (7,54,39,46,15,78) (8,57,35,47,18,74) (9,60,31,48,21,70) (10,63,27,49,24,66) (11,53,36,50,14,75) (12,56,32,51,17,71) (13,59,28,52,20,67)
  (1,65,36,40,26,75) (2,55,32,41,16,71) (3,58,28,42,19,67) (4,61,37,43,22,76) (5,64,33,44,25,72) (6,54,29,45,15,68) (7,57,38,46,18,77) (8,60,34,47,21,73) (9,63,30,48,24,69) (10,53,39,49,14,78) (11,56,35,50,17,74) (12,59,31,51,20,70) (13,62,27,52,23,66)

14.78-2.0.3-6-6.1.3
  (1,14,27) (2,17,36) (3,20,32) (4,23,28) (5,26,37) (6,16,33) (7,19,29) (8,22,38) (9,25,34) (10,15,30) (11,18,39) (12,21,35) (13,24,31) (40,53,66) (41,56,75) (42,59,71) (43,62,67) (44,65,76) (45,55,72) (46,58,68) (47,61,77) (48,64,73) (49,54,69) (50,57,78) (51,60,74) (52,63,70)
  (1,58,34,40,19,73) (2,61,30,41,22,69) (3,64,39,42,25,78) (4,54,35,43,15,74) (5,57,31,44,18,70) (6,60,27,45,21,66) (7,63,36,46,24,75) (8,53,32,47,14,71) (9,56,28,48,17,67) (10,59,37,49,20,76) (11,62,33,50,23,72) (12,65,29,51,26,68) (13,55,38,52,16,77)
  (1,64,32,40,25,71) (2,54,28,41,15,67) (3,57,37,42,18,76) (4,60,33,43,21,72) (5,63,29,44,24,68) (6,53,38,45,14,77) (7,56,34,46,17,73) (8,59,30,47,20,69) (9,62,39,48,23,78) (10,65,35,49,26,74) (11,55,31,50,16,70) (12,58,27,51,19,66) (13,61,36,52,22,75)

14.78-2.0.3-6-6.1.4
  (1,14,27) (2,17,36) (3,20,32) (4,23,28) (5,26,37) (6,16,33) (7,19,29) (8,22,38) (9,25,34) (10,15,30) (11,18,39) (12,21,35) (13,24,31) (40,53,66) (41,56,75) (42,59,71) (43,62,67) (44,65,76) (45,55,72) (46,58,68) (47,61,77) (48,64,73) (49,54,69) (50,57,78) (51,60,74) (52,63,70)
  (1,65,36,40,26,75) (2,55,32,41,16,71) (3,58,28,42,19,67) (4,61,37,43,22,76) (5,64,33,44,25,72) (6,54,29,45,15,68) (7,57,38,46,18,77) (8,60,34,47,21,73) (9,63,30,48,24,69) (10,53,39,49,14,78) (11,56,35,50,17,74) (12,59,31,51,20,70) (13,62,27,52,23,66)
  (1,56,39,40,17,78) (2,59,35,41,20,74) (3,62,31,42,23,70) (4,65,27,43,26,66) (5,55,36,44,16,75) (6,58,32,45,19,71) (7,61,28,46,22,67) (8,64,37,47,25,76) (9,54,33,48,15,72) (10,57,29,49,18,68) (11,60,38,50,21,77) (12,63,34,51,24,73) (13,53,30,52,14,69)

Display number of generating vectors: