Properties

Genus \(14\)
Quotient Genus \(0\)
Group \(C_3\times D_7\)
Signature \([ 0; 6, 6, 21 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 14
Quotient Genus: 0
Group name: $C_3\times D_7$
Group identifier: [42,4]
Signature: $[ 0; 6, 6, 21 ]$
Conjugacy classes for this refined passport: 5, 5, 10

The full automorphism group for this family is $C_6\times D_7$ with signature $[ 0; 2, 6, 42 ]$.

Jacobian variety group algebra decomposition:$E\times E\times A_{6}^{2}$
Corresponding character(s): 3, 4, 10

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

14.42-4.0.6-6-21.1.1

  (1,29,15,22,8,36) (2,35,16,28,9,42) (3,34,17,27,10,41) (4,33,18,26,11,40) (5,32,19,25,12,39) (6,31,20,24,13,38) (7,30,21,23,14,37)
  (1,35,15,28,8,42) (2,34,16,27,9,41) (3,33,17,26,10,40) (4,32,18,25,11,39) (5,31,19,24,12,38) (6,30,20,23,13,37) (7,29,21,22,14,36)
  (1,9,17,4,12,20,7,8,16,3,11,19,6,14,15,2,10,18,5,13,21) (22,30,38,25,33,41,28,29,37,24,32,40,27,35,36,23,31,39,26,34,42)