Properties

Genus \(14\)
Quotient Genus \(0\)
Group \(C_2\times D_{13}:C_3\)
Signature \([ 0; 2, 6, 6 ]\)
Generating Vectors \(2\)

Related objects

Downloads

Learn more about

Family Information

Genus: 14
Quotient Genus: 0
Group name: $C_2\times D_{13}:C_3$
Group identifier: [156,8]
Signature: $[ 0; 2, 6, 6 ]$
Conjugacy classes for this refined passport: 3, 7, 12

Jacobian variety group algebra decomposition:$E\times E\times A_{2}^{6}$
Corresponding character(s): 6, 9, 14

Other Data

Hyperelliptic curve(s):No
Cyclic trigonal curve(s):No

Generating Vector(s)

Displaying 2 of 2 generating vectors for this refined passport.

14.156-8.0.2-6-6.1.1

  (1,79) (2,91) (3,90) (4,89) (5,88) (6,87) (7,86) (8,85) (9,84) (10,83) (11,82) (12,81) (13,80) (14,92) (15,104) (16,103) (17,102) (18,101) (19,100) (20,99) (21,98) (22,97) (23,96) (24,95) (25,94) (26,93) (27,105) (28,117) (29,116) (30,115) (31,114) (32,113) (33,112) (34,111) (35,110) (36,109) (37,108) (38,107) (39,106) (40,118) (41,130) (42,129) (43,128) (44,127) (45,126) (46,125) (47,124) (48,123) (49,122) (50,121) (51,120) (52,119) (53,131) (54,143) (55,142) (56,141) (57,140) (58,139) (59,138) (60,137) (61,136) (62,135) (63,134) (64,133) (65,132) (66,144) (67,156) (68,155) (69,154) (70,153) (71,152) (72,151) (73,150) (74,149) (75,148) (76,147) (77,146) (78,145)
  (1,64,32,40,25,71) (2,54,28,41,15,67) (3,57,37,42,18,76) (4,60,33,43,21,72) (5,63,29,44,24,68) (6,53,38,45,14,77) (7,56,34,46,17,73) (8,59,30,47,20,69) (9,62,39,48,23,78) (10,65,35,49,26,74) (11,55,31,50,16,70) (12,58,27,51,19,66) (13,61,36,52,22,75) (79,142,110,118,103,149) (80,132,106,119,93,145) (81,135,115,120,96,154) (82,138,111,121,99,150) (83,141,107,122,102,146) (84,131,116,123,92,155) (85,134,112,124,95,151) (86,137,108,125,98,147) (87,140,117,126,101,156) (88,143,113,127,104,152) (89,133,109,128,94,148) (90,136,105,129,97,144) (91,139,114,130,100,153)
  (1,152,15,130,31,142) (2,156,18,129,27,139) (3,147,21,128,36,136) (4,151,24,127,32,133) (5,155,14,126,28,143) (6,146,17,125,37,140) (7,150,20,124,33,137) (8,154,23,123,29,134) (9,145,26,122,38,131) (10,149,16,121,34,141) (11,153,19,120,30,138) (12,144,22,119,39,135) (13,148,25,118,35,132) (40,113,54,91,70,103) (41,117,57,90,66,100) (42,108,60,89,75,97) (43,112,63,88,71,94) (44,116,53,87,67,104) (45,107,56,86,76,101) (46,111,59,85,72,98) (47,115,62,84,68,95) (48,106,65,83,77,92) (49,110,55,82,73,102) (50,114,58,81,69,99) (51,105,61,80,78,96) (52,109,64,79,74,93)

14.156-8.0.2-6-6.1.2
  (1,79) (2,91) (3,90) (4,89) (5,88) (6,87) (7,86) (8,85) (9,84) (10,83) (11,82) (12,81) (13,80) (14,92) (15,104) (16,103) (17,102) (18,101) (19,100) (20,99) (21,98) (22,97) (23,96) (24,95) (25,94) (26,93) (27,105) (28,117) (29,116) (30,115) (31,114) (32,113) (33,112) (34,111) (35,110) (36,109) (37,108) (38,107) (39,106) (40,118) (41,130) (42,129) (43,128) (44,127) (45,126) (46,125) (47,124) (48,123) (49,122) (50,121) (51,120) (52,119) (53,131) (54,143) (55,142) (56,141) (57,140) (58,139) (59,138) (60,137) (61,136) (62,135) (63,134) (64,133) (65,132) (66,144) (67,156) (68,155) (69,154) (70,153) (71,152) (72,151) (73,150) (74,149) (75,148) (76,147) (77,146) (78,145)
  (1,62,37,40,23,76) (2,65,33,41,26,72) (3,55,29,42,16,68) (4,58,38,43,19,77) (5,61,34,44,22,73) (6,64,30,45,25,69) (7,54,39,46,15,78) (8,57,35,47,18,74) (9,60,31,48,21,70) (10,63,27,49,24,66) (11,53,36,50,14,75) (12,56,32,51,17,71) (13,59,28,52,20,67) (79,140,115,118,101,154) (80,143,111,119,104,150) (81,133,107,120,94,146) (82,136,116,121,97,155) (83,139,112,122,100,151) (84,142,108,123,103,147) (85,132,117,124,93,156) (86,135,113,125,96,152) (87,138,109,126,99,148) (88,141,105,127,102,144) (89,131,114,128,92,153) (90,134,110,129,95,149) (91,137,106,130,98,145)
  (1,147,16,129,35,140) (2,151,19,128,31,137) (3,155,22,127,27,134) (4,146,25,126,36,131) (5,150,15,125,32,141) (6,154,18,124,28,138) (7,145,21,123,37,135) (8,149,24,122,33,132) (9,153,14,121,29,142) (10,144,17,120,38,139) (11,148,20,119,34,136) (12,152,23,118,30,133) (13,156,26,130,39,143) (40,108,55,90,74,101) (41,112,58,89,70,98) (42,116,61,88,66,95) (43,107,64,87,75,92) (44,111,54,86,71,102) (45,115,57,85,67,99) (46,106,60,84,76,96) (47,110,63,83,72,93) (48,114,53,82,68,103) (49,105,56,81,77,100) (50,109,59,80,73,97) (51,113,62,79,69,94) (52,117,65,91,78,104)

Display number of generating vectors: