Properties

Genus \(13\)
Quotient Genus \(0\)
Group \(S_3\times A_5\)
Signature \([ 0; 2, 3, 10 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 13
Quotient Genus: 0
Group name: $S_3\times A_5$
Group identifier: [360,121]
Signature: $[ 0; 2, 3, 10 ]$
Conjugacy classes for this refined passport: 4, 7, 12

Jacobian variety group algebra decomposition:$E^{5}\times E^{8}$
Corresponding character(s): 10, 14

Other Data

Hyperelliptic curve(s):No
Cyclic trigonal curve(s):No

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

13.360-121.0.2-3-10.1.1

  (1,6) (2,59) (3,7) (4,12) (5,113) (8,200) (9,13) (10,30) (11,176) (14,77) (15,25) (16,21) (17,44) (18,22) (19,27) (20,98) (23,185) (24,28) (26,161) (29,62) (31,36) (32,89) (33,37) (34,42) (35,173) (38,290) (39,43) (40,60) (41,266) (45,55) (46,51) (47,74) (48,52) (49,57) (50,158) (53,275) (54,58) (56,251) (61,66) (63,67) (64,72) (65,263) (68,350) (69,73) (70,90) (71,116) (75,85) (76,81) (78,82) (79,87) (80,248) (83,335) (84,88) (86,101) (91,96) (92,359) (93,97) (94,102) (95,203) (99,103) (100,120) (104,227) (105,115) (106,111) (107,344) (108,112) (109,117) (110,188) (114,118) (119,212) (121,126) (122,179) (123,127) (124,132) (125,233) (128,320) (129,133) (130,150) (131,296) (134,197) (135,145) (136,141) (137,164) (138,142) (139,147) (140,218) (143,305) (144,148) (146,281) (149,182) (151,156) (152,209) (153,157) (154,162) (155,293) (159,163) (160,180) (165,175) (166,171) (167,194) (168,172) (169,177) (170,278) (174,178) (181,186) (183,187) (184,192) (189,193) (190,210) (191,236) (195,205) (196,201) (198,202) (199,207) (204,208) (206,221) (211,216) (213,217) (214,222) (215,323) (219,223) (220,240) (224,347) (225,235) (226,231) (228,232) (229,237) (230,308) (234,238) (239,332) (241,246) (242,299) (243,247) (244,252) (245,353) (249,253) (250,270) (254,317) (255,265) (256,261) (257,284) (258,262) (259,267) (260,338) (264,268) (269,302) (271,276) (272,329) (273,277) (274,282) (279,283) (280,300) (285,295) (286,291) (287,314) (288,292) (289,297) (294,298) (301,306) (303,307) (304,312) (309,313) (310,330) (311,356) (315,325) (316,321) (318,322) (319,327) (324,328) (326,341) (331,336) (333,337) (334,342) (339,343) (340,360) (345,355) (346,351) (348,352) (349,357) (354,358)
  (1,2,3) (4,5,6) (7,8,9) (10,11,12) (13,14,15) (16,17,18) (19,20,21) (22,23,24) (25,26,27) (28,29,30) (31,32,33) (34,35,36) (37,38,39) (40,41,42) (43,44,45) (46,47,48) (49,50,51) (52,53,54) (55,56,57) (58,59,60) (61,62,63) (64,65,66) (67,68,69) (70,71,72) (73,74,75) (76,77,78) (79,80,81) (82,83,84) (85,86,87) (88,89,90) (91,92,93) (94,95,96) (97,98,99) (100,101,102) (103,104,105) (106,107,108) (109,110,111) (112,113,114) (115,116,117) (118,119,120) (121,122,123) (124,125,126) (127,128,129) (130,131,132) (133,134,135) (136,137,138) (139,140,141) (142,143,144) (145,146,147) (148,149,150) (151,152,153) (154,155,156) (157,158,159) (160,161,162) (163,164,165) (166,167,168) (169,170,171) (172,173,174) (175,176,177) (178,179,180) (181,182,183) (184,185,186) (187,188,189) (190,191,192) (193,194,195) (196,197,198) (199,200,201) (202,203,204) (205,206,207) (208,209,210) (211,212,213) (214,215,216) (217,218,219) (220,221,222) (223,224,225) (226,227,228) (229,230,231) (232,233,234) (235,236,237) (238,239,240) (241,242,243) (244,245,246) (247,248,249) (250,251,252) (253,254,255) (256,257,258) (259,260,261) (262,263,264) (265,266,267) (268,269,270) (271,272,273) (274,275,276) (277,278,279) (280,281,282) (283,284,285) (286,287,288) (289,290,291) (292,293,294) (295,296,297) (298,299,300) (301,302,303) (304,305,306) (307,308,309) (310,311,312) (313,314,315) (316,317,318) (319,320,321) (322,323,324) (325,326,327) (328,329,330) (331,332,333) (334,335,336) (337,338,339) (340,341,342) (343,344,345) (346,347,348) (349,350,351) (352,353,354) (355,356,357) (358,359,360)
  (1,7,13,25,19,16,22,28,10,4) (2,6,113,108,344,339,260,267,41,60) (3,59,54,275,282,146,135,197,201,8) (5,12,176,165,137,141,218,213,119,114) (9,200,207,221,240,332,336,83,78,14) (11,30,62,66,263,258,284,279,170,177) (15,77,81,248,243,299,294,155,162,26) (17,21,98,93,359,354,245,252,56,45) (18,44,39,290,297,131,150,182,186,23) (20,27,161,180,122,126,233,228,104,99) (24,185,192,236,225,347,351,68,63,29) (31,37,43,55,49,46,52,58,40,34) (32,36,173,168,194,189,110,117,71,90) (33,89,84,335,342,326,315,287,291,38) (35,42,266,255,317,321,128,123,179,174) (47,51,158,153,209,204,95,102,86,75) (48,74,69,350,357,311,330,272,276,53) (50,57,251,270,302,306,143,138,164,159) (61,67,73,85,79,76,82,88,70,64) (65,72,116,105,227,231,308,303,269,264) (80,87,101,120,212,216,323,318,254,249) (91,97,103,115,109,106,112,118,100,94) (92,96,203,198,134,129,320,327,341,360) (107,111,188,183,149,144,305,312,356,345) (121,127,133,145,139,136,142,148,130,124) (125,132,296,285,257,261,338,333,239,234) (140,147,281,300,242,246,353,348,224,219) (151,157,163,175,169,166,172,178,160,154) (152,156,293,288,314,309,230,237,191,210) (167,171,278,273,329,324,215,222,206,195) (181,187,193,205,199,196,202,208,190,184) (211,217,223,235,229,226,232,238,220,214) (241,247,253,265,259,256,262,268,250,244) (271,277,283,295,289,286,292,298,280,274) (301,307,313,325,319,316,322,328,310,304) (331,337,343,355,349,346,352,358,340,334)