Properties

Genus \(13\)
Quotient Genus \(0\)
Group \(C_3\times A_5\)
Signature \([ 0; 3, 3, 5 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 13
Quotient Genus: 0
Group name: $C_3\times A_5$
Group identifier: [180,19]
Signature: $[ 0; 3, 3, 5 ]$
Conjugacy classes for this refined passport: 5, 6, 8

The full automorphism group for this family is $S_3\times A_5$ with signature $[ 0; 2, 3, 10 ]$.

Jacobian variety group algebra decomposition:$A_{2}^{4}\times E^{5}$
Corresponding character(s): 11, 13

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

13.180-19.0.3-3-5.1.1

  (1,6,11) (2,180,8) (3,12,35) (4,29,119) (5,153,147) (7,105,13) (9,99,44) (10,118,37) (14,114,154) (15,43,52) (16,96,176) (17,50,98) (18,177,150) (19,144,169) (20,88,82) (21,26,31) (22,140,28) (23,32,55) (24,49,79) (25,173,167) (27,65,33) (30,78,57) (34,74,174) (36,116,136) (38,137,170) (39,164,129) (40,108,102) (41,46,51) (42,160,48) (45,133,127) (47,85,53) (54,94,134) (56,76,156) (58,157,130) (59,124,149) (60,68,62) (61,66,71) (63,72,95) (64,89,179) (67,165,73) (69,159,104) (70,178,97) (75,103,112) (77,110,158) (80,148,142) (81,86,91) (83,92,115) (84,109,139) (87,125,93) (90,138,117) (100,168,162) (101,106,111) (107,145,113) (120,128,122) (121,126,131) (123,132,155) (135,163,172) (141,146,151) (143,152,175) (161,166,171)
  (1,129,68) (2,117,27) (3,131,64) (4,123,71) (5,15,10) (6,134,73) (7,42,97) (8,121,69) (9,128,61) (11,124,63) (12,152,112) (13,126,74) (14,133,66) (16,39,158) (17,167,142) (18,116,79) (19,138,56) (20,180,100) (21,149,88) (22,77,47) (23,151,84) (24,143,91) (25,35,30) (26,154,93) (28,141,89) (29,148,81) (31,144,83) (32,172,72) (33,146,94) (34,153,86) (36,59,178) (37,127,162) (38,76,99) (40,140,120) (41,169,108) (43,171,104) (44,163,111) (45,55,50) (46,174,113) (48,161,109) (49,168,101) (51,164,103) (52,132,92) (53,166,114) (54,173,106) (57,147,122) (58,96,119) (60,160,80) (62,177,87) (65,75,70) (67,102,157) (78,176,139) (82,137,107) (85,95,90) (98,136,159) (105,115,110) (118,156,179) (125,135,130) (145,155,150) (165,175,170)
  (1,60,142,173,134) (2,33,54,101,100) (3,179,76,170,152) (4,66,45,17,148) (5,37,168,24,86) (6,165,137,88,124) (7,178,149,31,115) (8,104,166,85,117) (9,71,155,107,38) (10,52,83,19,156) (11,95,47,158,129) (12,103,39,176,30) (13,34,81,80,42) (14,61,120,22,53) (15,147,78,109,171) (16,110,92,123,119) (18,49,111,135,87) (20,162,133,154,21) (23,139,96,130,172) (25,57,128,44,106) (26,125,157,108,144) (27,138,169,51,75) (28,64,126,105,77) (29,91,175,67,58) (32,63,59,136,50) (35,167,98,69,131) (36,70,112,143,79) (40,122,153,174,41) (43,159,116,150,132) (46,145,177,68,164) (48,84,146,65,97) (55,127,118,89,151) (56,90,72,163,99) (62,93,114,161,160) (73,94,141,140,102) (74,121,180,82,113)