Properties

Genus \(13\)
Quotient Genus \(0\)
Group \(C_2\times A_5\)
Signature \([ 0; 2, 5, 10 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 13
Quotient Genus: 0
Group name: $C_2\times A_5$
Group identifier: [120,35]
Signature: $[ 0; 2, 5, 10 ]$
Conjugacy classes for this refined passport: 3, 6, 9

The full automorphism group for this family is $S_3\times A_5$ with signature $[ 0; 2, 3, 10 ]$.

Jacobian variety group algebra decomposition:$E^{4}\times E^{4}\times E^{5}$
Corresponding character(s): 7, 8, 10

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

13.120-35.0.2-5-10.1.1

  (1,6) (2,5) (3,14) (4,38) (7,10) (8,29) (9,108) (11,16) (12,15) (13,99) (17,20) (18,104) (19,53) (21,26) (22,25) (23,34) (24,58) (27,30) (28,49) (31,36) (32,35) (33,119) (37,40) (39,73) (41,46) (42,45) (43,54) (44,78) (47,50) (48,69) (51,56) (52,55) (57,60) (59,93) (61,66) (62,65) (63,74) (64,98) (67,70) (68,89) (71,76) (72,75) (77,80) (79,113) (81,86) (82,85) (83,94) (84,118) (87,90) (88,109) (91,96) (92,95) (97,100) (101,106) (102,105) (103,114) (107,110) (111,116) (112,115) (117,120)
  (1,2,4,50,3) (5,78,76,77,79) (6,7,9,100,8) (10,83,81,82,84) (11,12,14,115,13) (15,33,31,32,34) (16,17,19,65,18) (20,48,46,47,49) (21,22,24,70,23) (25,98,96,97,99) (26,27,29,120,28) (30,103,101,102,104) (35,53,51,52,54) (36,37,39,85,38) (40,68,66,67,69) (41,42,44,90,43) (45,118,116,117,119) (55,73,71,72,74) (56,57,59,105,58) (60,88,86,87,89) (61,62,64,110,63) (75,93,91,92,94) (80,108,106,107,109) (95,113,111,112,114)
  (1,14,15,23,67,61,74,75,83,7) (2,6,29,30,18,62,66,89,90,78) (3,47,41,54,55,63,107,101,114,115) (4,5,113,92,96,64,65,53,32,36) (8,97,91,59,60,68,37,31,119,120) (9,10,118,42,46,69,70,58,102,106) (11,99,100,108,77,71,39,40,48,17) (12,16,104,105,93,72,76,44,45,33) (13,112,116,84,85,73,52,56,24,25) (19,20,28,117,111,79,80,88,57,51) (21,34,35,43,87,81,94,95,103,27) (22,26,49,50,38,82,86,109,110,98)