Properties

Genus \(10\)
Quotient Genus \(0\)
Group \(PSU(3,2)\)
Signature \([ 0; 4, 4, 4 ]\)
Generating Vectors \(4\)

Related objects

Downloads

Learn more about

Family Information

Genus: 10
Quotient Genus: 0
Group name: $PSU(3,2)$
Group identifier: [72,41]
Signature: $[ 0; 4, 4, 4 ]$
Conjugacy classes for this refined passport: 4, 5, 6

The full automorphism group for this family is $AGL(2,3)$ with signature $[ 0; 2, 3, 8 ]$.

Jacobian variety group algebra decomposition:$A_{2}\times E^{8}$
Corresponding character(s): 5, 6

Generating Vector(s)

Displaying 4 of 4 generating vectors for this refined passport.

10.72-41.0.4-4-4.1.1

  (1,19,10,28) (2,25,12,31) (3,22,11,34) (4,20,16,30) (5,26,18,33) (6,23,17,36) (7,21,13,29) (8,27,15,32) (9,24,14,35) (37,55,46,64) (38,61,48,67) (39,58,47,70) (40,56,52,66) (41,62,54,69) (42,59,53,72) (43,57,49,65) (44,63,51,68) (45,60,50,71)
  (1,42,12,52) (2,38,11,47) (3,43,10,51) (4,44,18,50) (5,40,17,54) (6,39,16,46) (7,37,15,48) (8,45,14,49) (9,41,13,53) (19,69,30,61) (20,65,29,56) (21,70,28,60) (22,71,36,59) (23,67,35,63) (24,66,34,55) (25,64,33,57) (26,72,32,58) (27,68,31,62)
  (1,56,13,69) (2,58,15,64) (3,63,14,71) (4,60,10,65) (5,62,12,72) (6,55,11,67) (7,61,16,70) (8,57,18,68) (9,59,17,66) (19,38,31,51) (20,40,33,46) (21,45,32,53) (22,42,28,47) (23,44,30,54) (24,37,29,49) (25,43,34,52) (26,39,36,50) (27,41,35,48)

10.72-41.0.4-4-4.1.2
  (1,19,10,28) (2,25,12,31) (3,22,11,34) (4,20,16,30) (5,26,18,33) (6,23,17,36) (7,21,13,29) (8,27,15,32) (9,24,14,35) (37,55,46,64) (38,61,48,67) (39,58,47,70) (40,56,52,66) (41,62,54,69) (42,59,53,72) (43,57,49,65) (44,63,51,68) (45,60,50,71)
  (1,38,16,54) (2,43,18,46) (3,42,17,50) (4,40,13,49) (5,39,15,53) (6,44,14,48) (7,45,10,47) (8,41,12,51) (9,37,11,52) (19,65,34,63) (20,70,36,55) (21,69,35,59) (22,67,31,58) (23,66,33,62) (24,71,32,57) (25,72,28,56) (26,68,30,60) (27,64,29,61)
  (1,62,18,65) (2,55,17,72) (3,60,16,67) (4,57,15,70) (5,59,14,68) (6,61,13,66) (7,58,12,69) (8,63,11,64) (9,56,10,71) (19,44,36,47) (20,37,35,54) (21,42,34,49) (22,39,33,52) (23,41,32,50) (24,43,31,48) (25,40,30,51) (26,45,29,46) (27,38,28,53)

10.72-41.0.4-4-4.1.3
  (1,19,10,28) (2,25,12,31) (3,22,11,34) (4,20,16,30) (5,26,18,33) (6,23,17,36) (7,21,13,29) (8,27,15,32) (9,24,14,35) (37,55,46,64) (38,61,48,67) (39,58,47,70) (40,56,52,66) (41,62,54,69) (42,59,53,72) (43,57,49,65) (44,63,51,68) (45,60,50,71)
  (1,40,18,51) (2,39,17,52) (3,44,16,47) (4,45,15,46) (5,41,14,50) (6,37,13,54) (7,38,12,53) (8,43,11,48) (9,42,10,49) (19,67,36,60) (20,66,35,61) (21,71,34,56) (22,72,33,55) (23,68,32,59) (24,64,31,63) (25,65,30,62) (26,70,29,57) (27,69,28,58)
  (1,63,12,67) (2,56,11,65) (3,58,10,72) (4,55,18,66) (5,60,17,70) (6,62,16,68) (7,59,15,71) (8,61,14,69) (9,57,13,64) (19,45,30,49) (20,38,29,47) (21,40,28,54) (22,37,36,48) (23,42,35,52) (24,44,34,50) (25,41,33,53) (26,43,32,51) (27,39,31,46)

10.72-41.0.4-4-4.1.4
  (1,19,10,28) (2,25,12,31) (3,22,11,34) (4,20,16,30) (5,26,18,33) (6,23,17,36) (7,21,13,29) (8,27,15,32) (9,24,14,35) (37,55,46,64) (38,61,48,67) (39,58,47,70) (40,56,52,66) (41,62,54,69) (42,59,53,72) (43,57,49,65) (44,63,51,68) (45,60,50,71)
  (1,45,17,48) (2,41,16,49) (3,37,18,53) (4,38,14,52) (5,43,13,47) (6,42,15,51) (7,40,11,50) (8,39,10,54) (9,44,12,46) (19,72,35,57) (20,68,34,58) (21,64,36,62) (22,65,32,61) (23,70,31,56) (24,69,33,60) (25,67,29,59) (26,66,28,63) (27,71,30,55)
  (1,61,15,72) (2,57,14,67) (3,59,13,65) (4,56,12,68) (5,58,11,66) (6,63,10,70) (7,60,18,64) (8,62,17,71) (9,55,16,69) (19,43,33,54) (20,39,32,49) (21,41,31,47) (22,38,30,50) (23,40,29,48) (24,45,28,52) (25,42,36,46) (26,44,35,53) (27,37,34,51)

Display number of generating vectors: