Properties

Genus \(10\)
Quotient Genus \(0\)
Group \((C_3\times A_4):C_6\)
Signature \([ 0; 2, 3, 12 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 10
Quotient Genus: 0
Group name: $(C_3\times A_4):C_6$
Group identifier: [216,92]
Signature: $[ 0; 2, 3, 12 ]$
Conjugacy classes for this refined passport: 3, 8, 19

Jacobian variety group algebra decomposition:$E\times E^{3}\times E^{6}$
Corresponding character(s): 5, 14, 18

Other Data

Hyperelliptic curve(s):No
Cyclic trigonal curve(s):No

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

10.216-92.0.2-3-12.1.1

  (1,109) (2,111) (3,110) (4,112) (5,117) (6,119) (7,118) (8,120) (9,113) (10,115) (11,114) (12,116) (13,133) (14,135) (15,134) (16,136) (17,141) (18,143) (19,142) (20,144) (21,137) (22,139) (23,138) (24,140) (25,121) (26,123) (27,122) (28,124) (29,129) (30,131) (31,130) (32,132) (33,125) (34,127) (35,126) (36,128) (37,145) (38,147) (39,146) (40,148) (41,153) (42,155) (43,154) (44,156) (45,149) (46,151) (47,150) (48,152) (49,169) (50,171) (51,170) (52,172) (53,177) (54,179) (55,178) (56,180) (57,173) (58,175) (59,174) (60,176) (61,157) (62,159) (63,158) (64,160) (65,165) (66,167) (67,166) (68,168) (69,161) (70,163) (71,162) (72,164) (73,181) (74,183) (75,182) (76,184) (77,189) (78,191) (79,190) (80,192) (81,185) (82,187) (83,186) (84,188) (85,205) (86,207) (87,206) (88,208) (89,213) (90,215) (91,214) (92,216) (93,209) (94,211) (95,210) (96,212) (97,193) (98,195) (99,194) (100,196) (101,201) (102,203) (103,202) (104,204) (105,197) (106,199) (107,198) (108,200)
  (1,51,104) (2,50,102) (3,52,101) (4,49,103) (5,55,108) (6,54,106) (7,56,105) (8,53,107) (9,59,100) (10,58,98) (11,60,97) (12,57,99) (13,67,76) (14,66,74) (15,68,73) (16,65,75) (17,71,80) (18,70,78) (19,72,77) (20,69,79) (21,63,84) (22,62,82) (23,64,81) (24,61,83) (25,47,96) (26,46,94) (27,48,93) (28,45,95) (29,39,88) (30,38,86) (31,40,85) (32,37,87) (33,43,92) (34,42,90) (35,44,89) (36,41,91) (109,159,212) (110,158,210) (111,160,209) (112,157,211) (113,163,216) (114,162,214) (115,164,213) (116,161,215) (117,167,208) (118,166,206) (119,168,205) (120,165,207) (121,175,184) (122,174,182) (123,176,181) (124,173,183) (125,179,188) (126,178,186) (127,180,185) (128,177,187) (129,171,192) (130,170,190) (131,172,189) (132,169,191) (133,155,204) (134,154,202) (135,156,201) (136,153,203) (137,147,196) (138,146,194) (139,148,193) (140,145,195) (141,151,200) (142,150,198) (143,152,197) (144,149,199)
  (1,204,42,127,81,160,2,203,41,128,82,159) (3,201,44,126,83,157,4,202,43,125,84,158) (5,200,46,123,73,168,6,199,45,124,74,167) (7,197,48,122,75,165,8,198,47,121,76,166) (9,196,38,131,77,164,10,195,37,132,78,163) (11,193,40,130,79,161,12,194,39,129,80,162) (13,184,58,115,89,156,14,183,57,116,90,155) (15,181,60,114,91,153,16,182,59,113,92,154) (17,192,50,111,93,152,18,191,49,112,94,151) (19,189,52,110,95,149,20,190,51,109,96,150) (21,188,54,119,85,148,22,187,53,120,86,147) (23,185,56,118,87,145,24,186,55,117,88,146) (25,212,62,139,97,176,26,211,61,140,98,175) (27,209,64,138,99,173,28,210,63,137,100,174) (29,208,66,135,101,172,30,207,65,136,102,171) (31,205,68,134,103,169,32,206,67,133,104,170) (33,216,70,143,105,180,34,215,69,144,106,179) (35,213,72,142,107,177,36,214,71,141,108,178)