Properties

Genus \(10\)
Quotient Genus \(0\)
Group \(C_3.S_3\wr C_2\)
Signature \([ 0; 2, 4, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 10
Quotient Genus: 0
Group name: $C_3.S_3\wr C_2$
Group identifier: [216,87]
Signature: $[ 0; 2, 4, 6 ]$
Conjugacy classes for this refined passport: 3, 8, 11

Jacobian variety group algebra decomposition:$E^{4}\times E^{6}$
Corresponding character(s): 7, 11

Other Data

Hyperelliptic curve(s):No
Cyclic trigonal curve(s):No

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

10.216-87.0.2-4-6.1.1

  (1,55) (2,57) (3,56) (4,64) (5,66) (6,65) (7,73) (8,75) (9,74) (10,58) (11,60) (12,59) (13,68) (14,67) (15,69) (16,78) (17,77) (18,76) (19,61) (20,63) (21,62) (22,72) (23,71) (24,70) (25,80) (26,79) (27,81) (28,82) (29,84) (30,83) (31,91) (32,93) (33,92) (34,100) (35,102) (36,101) (37,85) (38,87) (39,86) (40,95) (41,94) (42,96) (43,105) (44,104) (45,103) (46,88) (47,90) (48,89) (49,99) (50,98) (51,97) (52,107) (53,106) (54,108) (109,163) (110,165) (111,164) (112,172) (113,174) (114,173) (115,181) (116,183) (117,182) (118,166) (119,168) (120,167) (121,176) (122,175) (123,177) (124,186) (125,185) (126,184) (127,169) (128,171) (129,170) (130,180) (131,179) (132,178) (133,188) (134,187) (135,189) (136,190) (137,192) (138,191) (139,199) (140,201) (141,200) (142,208) (143,210) (144,209) (145,193) (146,195) (147,194) (148,203) (149,202) (150,204) (151,213) (152,212) (153,211) (154,196) (155,198) (156,197) (157,207) (158,206) (159,205) (160,215) (161,214) (162,216)
  (1,184,34,202) (2,185,35,203) (3,186,36,204) (4,166,31,193) (5,167,32,194) (6,168,33,195) (7,175,28,211) (8,176,29,212) (9,177,30,213) (10,182,52,206) (11,183,53,207) (12,181,54,205) (13,163,49,196) (14,164,50,197) (15,165,51,198) (16,174,46,216) (17,172,47,214) (18,173,48,215) (19,189,43,201) (20,187,44,199) (21,188,45,200) (22,169,40,190) (23,170,41,191) (24,171,42,192) (25,179,37,209) (26,180,38,210) (27,178,39,208) (55,157,88,121) (56,158,89,122) (57,159,90,123) (58,139,85,112) (59,140,86,113) (60,141,87,114) (61,148,82,130) (62,149,83,131) (63,150,84,132) (64,155,106,125) (65,156,107,126) (66,154,108,124) (67,136,103,115) (68,137,104,116) (69,138,105,117) (70,147,100,135) (71,145,101,133) (72,146,102,134) (73,162,97,120) (74,160,98,118) (75,161,99,119) (76,142,94,109) (77,143,95,110) (78,144,96,111) (79,152,91,128) (80,153,92,129) (81,151,93,127)
  (1,149,21,141,11,157) (2,148,19,140,12,159) (3,150,20,139,10,158) (4,145,23,138,15,155) (5,147,24,137,13,154) (6,146,22,136,14,156) (7,153,25,144,16,162) (8,152,26,143,17,161) (9,151,27,142,18,160) (28,122,48,114,38,130) (29,121,46,113,39,132) (30,123,47,112,37,131) (31,118,50,111,42,128) (32,120,51,110,40,127) (33,119,49,109,41,129) (34,126,52,117,43,135) (35,125,53,116,44,134) (36,124,54,115,45,133) (55,176,75,168,65,184) (56,175,73,167,66,186) (57,177,74,166,64,185) (58,172,77,165,69,182) (59,174,78,164,67,181) (60,173,76,163,68,183) (61,180,79,171,70,189) (62,179,80,170,71,188) (63,178,81,169,72,187) (82,203,102,195,92,211) (83,202,100,194,93,213) (84,204,101,193,91,212) (85,199,104,192,96,209) (86,201,105,191,94,208) (87,200,103,190,95,210) (88,207,106,198,97,216) (89,206,107,197,98,215) (90,205,108,196,99,214)