Properties

Genus \(10\)
Quotient Genus \(0\)
Group \(S_3^2:S_3\)
Signature \([ 0; 2, 4, 6 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 10
Quotient Genus: 0
Group name: $S_3^2:S_3$
Group identifier: [216,158]
Signature: $[ 0; 2, 4, 6 ]$
Conjugacy classes for this refined passport: 4, 11, 15

Jacobian variety group algebra decomposition:$E^{2}\times E^{4}\times E^{4}$
Corresponding character(s): 8, 11, 15

Other Data

Hyperelliptic curve(s):No
Cyclic trigonal curve(s):No

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

10.216-158.0.2-4-6.1.1

  (1,109) (2,111) (3,110) (4,118) (5,120) (6,119) (7,127) (8,129) (9,128) (10,112) (11,114) (12,113) (13,121) (14,123) (15,122) (16,130) (17,132) (18,131) (19,115) (20,117) (21,116) (22,124) (23,126) (24,125) (25,133) (26,135) (27,134) (28,136) (29,138) (30,137) (31,145) (32,147) (33,146) (34,154) (35,156) (36,155) (37,139) (38,141) (39,140) (40,148) (41,150) (42,149) (43,157) (44,159) (45,158) (46,142) (47,144) (48,143) (49,151) (50,153) (51,152) (52,160) (53,162) (54,161) (55,190) (56,192) (57,191) (58,199) (59,201) (60,200) (61,208) (62,210) (63,209) (64,193) (65,195) (66,194) (67,202) (68,204) (69,203) (70,211) (71,213) (72,212) (73,196) (74,198) (75,197) (76,205) (77,207) (78,206) (79,214) (80,216) (81,215) (82,163) (83,165) (84,164) (85,172) (86,174) (87,173) (88,181) (89,183) (90,182) (91,166) (92,168) (93,167) (94,175) (95,177) (96,176) (97,184) (98,186) (99,185) (100,169) (101,171) (102,170) (103,178) (104,180) (105,179) (106,187) (107,189) (108,188)
  (1,189,31,207) (2,188,32,206) (3,187,33,205) (4,180,28,216) (5,179,29,215) (6,178,30,214) (7,171,34,198) (8,170,35,197) (9,169,36,196) (10,183,49,204) (11,182,50,203) (12,181,51,202) (13,174,46,213) (14,173,47,212) (15,172,48,211) (16,165,52,195) (17,164,53,194) (18,163,54,193) (19,186,40,201) (20,185,41,200) (21,184,42,199) (22,177,37,210) (23,176,38,209) (24,175,39,208) (25,168,43,192) (26,167,44,191) (27,166,45,190) (55,162,85,126) (56,161,86,125) (57,160,87,124) (58,153,82,135) (59,152,83,134) (60,151,84,133) (61,144,88,117) (62,143,89,116) (63,142,90,115) (64,156,103,123) (65,155,104,122) (66,154,105,121) (67,147,100,132) (68,146,101,131) (69,145,102,130) (70,138,106,114) (71,137,107,113) (72,136,108,112) (73,159,94,120) (74,158,95,119) (75,157,96,118) (76,150,91,129) (77,149,92,128) (78,148,93,127) (79,141,97,111) (80,140,98,110) (81,139,99,109)
  (1,77,9,73,5,81) (2,78,7,74,6,79) (3,76,8,75,4,80) (10,68,18,64,14,72) (11,69,16,65,15,70) (12,67,17,66,13,71) (19,59,27,55,23,63) (20,60,25,56,24,61) (21,58,26,57,22,62) (28,104,36,100,32,108) (29,105,34,101,33,106) (30,103,35,102,31,107) (37,95,45,91,41,99) (38,96,43,92,42,97) (39,94,44,93,40,98) (46,86,54,82,50,90) (47,87,52,83,51,88) (48,85,53,84,49,89) (109,185,117,181,113,189) (110,186,115,182,114,187) (111,184,116,183,112,188) (118,176,126,172,122,180) (119,177,124,173,123,178) (120,175,125,174,121,179) (127,167,135,163,131,171) (128,168,133,164,132,169) (129,166,134,165,130,170) (136,212,144,208,140,216) (137,213,142,209,141,214) (138,211,143,210,139,215) (145,203,153,199,149,207) (146,204,151,200,150,205) (147,202,152,201,148,206) (154,194,162,190,158,198) (155,195,160,191,159,196) (156,193,161,192,157,197)