Properties

Genus \(10\)
Quotient Genus \(0\)
Group \(C_3\times A_5\)
Signature \([ 0; 2, 3, 15 ]\)
Generating Vectors \(1\)

Related objects

Downloads

Learn more about

Family Information

Genus: 10
Quotient Genus: 0
Group name: $C_3\times A_5$
Group identifier: [180,19]
Signature: $[ 0; 2, 3, 15 ]$
Conjugacy classes for this refined passport: 2, 5, 13

Jacobian variety group algebra decomposition:$A_{2}^{3}\times E^{4}$
Corresponding character(s): 6, 11

Other Data

Hyperelliptic curve(s):No
Cyclic trigonal curve(s):Yes
Trigonal automorphism: (1,61,121) (2,62,122) (3,63,123) (4,64,124) (5,65,125) (6,66,126) (7,67,127) (8,68,128) (9,69,129) (10,70,130) (11,71,131) (12,72,132) (13,73,133) (14,74,134) (15,75,135) (16,76,136) (17,77,137) (18,78,138) (19,79,139) (20,80,140) (21,81,141) (22,82,142) (23,83,143) (24,84,144) (25,85,145) (26,86,146) (27,87,147) (28,88,148) (29,89,149) (30,90,150) (31,91,151) (32,92,152) (33,93,153) (34,94,154) (35,95,155) (36,96,156) (37,97,157) (38,98,158) (39,99,159) (40,100,160) (41,101,161) (42,102,162) (43,103,163) (44,104,164) (45,105,165) (46,106,166) (47,107,167) (48,108,168) (49,109,169) (50,110,170) (51,111,171) (52,112,172) (53,113,173) (54,114,174) (55,115,175) (56,116,176) (57,117,177) (58,118,178) (59,119,179) (60,120,180)

Generating Vector(s)

Displaying the unique generating vector for this refined passport.

10.180-19.0.2-3-15.1.1

  (1,10) (2,119) (3,93) (4,27) (5,11) (6,15) (7,44) (8,58) (9,97) (12,154) (13,163) (14,112) (16,100) (17,169) (18,28) (19,142) (20,176) (21,30) (22,79) (23,113) (24,47) (25,31) (26,35) (29,117) (32,174) (33,123) (34,72) (36,120) (37,129) (38,48) (39,162) (40,136) (41,50) (42,99) (43,73) (45,51) (46,55) (49,77) (52,134) (53,143) (54,92) (56,80) (57,149) (59,122) (60,156) (61,70) (62,179) (63,153) (64,87) (65,71) (66,75) (67,104) (68,118) (69,157) (74,172) (76,160) (78,88) (81,90) (82,139) (83,173) (84,107) (85,91) (86,95) (89,177) (94,132) (96,180) (98,108) (101,110) (102,159) (103,133) (105,111) (106,115) (109,137) (114,152) (116,140) (121,130) (124,147) (125,131) (126,135) (127,164) (128,178) (138,148) (141,150) (144,167) (145,151) (146,155) (158,168) (161,170) (165,171) (166,175)
  (1,6,11) (2,180,8) (3,12,35) (4,29,119) (5,153,147) (7,105,13) (9,99,44) (10,118,37) (14,114,154) (15,43,52) (16,96,176) (17,50,98) (18,177,150) (19,144,169) (20,88,82) (21,26,31) (22,140,28) (23,32,55) (24,49,79) (25,173,167) (27,65,33) (30,78,57) (34,74,174) (36,116,136) (38,137,170) (39,164,129) (40,108,102) (41,46,51) (42,160,48) (45,133,127) (47,85,53) (54,94,134) (56,76,156) (58,157,130) (59,124,149) (60,68,62) (61,66,71) (63,72,95) (64,89,179) (67,165,73) (69,159,104) (70,178,97) (75,103,112) (77,110,158) (80,148,142) (81,86,91) (83,92,115) (84,109,139) (87,125,93) (90,138,117) (100,168,162) (101,106,111) (107,145,113) (120,128,122) (121,126,131) (123,132,155) (135,163,172) (141,146,151) (143,152,175) (161,166,171)
  (1,5,124,122,178,61,65,4,2,58,121,125,64,62,118) (3,26,30,149,147,63,86,90,29,27,123,146,150,89,87) (6,10,129,127,103,66,70,9,7,163,126,130,69,67,43) (8,96,100,39,37,68,156,160,99,97,128,36,40,159,157) (11,15,134,132,33,71,75,14,12,93,131,135,74,72,153) (13,111,115,54,52,73,171,175,114,112,133,51,55,174,172) (16,20,139,137,48,76,80,19,17,108,136,140,79,77,168) (18,141,145,84,82,78,21,25,144,142,138,81,85,24,22) (23,46,50,169,167,83,106,110,49,47,143,166,170,109,107) (28,116,120,59,57,88,176,180,119,117,148,56,60,179,177) (31,35,154,152,53,91,95,34,32,113,151,155,94,92,173) (38,161,165,104,102,98,41,45,164,162,158,101,105,44,42)