Learn more

Refine search


Results (24 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
1152.a.147456.1 1152.a \( 2^{7} \cdot 3^{2} \) $0$ $\Z/8\Z$ \(\mathrm{M}_2(\Q)\) $[152,109,5469,18]$ $[608,14240,405504,10942208,147456]$ $[\frac{5071050752}{9},\frac{195344320}{9},1016576]$ $y^2 = x^6 - 2x^4 + 2x^2 - 1$
1600.b.409600.1 1600.b \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[248,181,14873,50]$ $[992,39072,1945600,100853504,409600]$ $[\frac{58632501248}{25},\frac{2327987904}{25},4674304]$ $y^2 = x^6 - 4x^4 + 4x^2 - 1$
2500.a.50000.1 2500.a \( 2^{2} \cdot 5^{4} \) $0$ $\Z/15\Z$ \(\mathrm{M}_2(\Q)\) $[100,625,21385,2048]$ $[125,0,-10000,-312500,50000]$ $[\frac{9765625}{16},0,-3125]$ $y^2 + (x^3 + 1)y = x^5 + 2x^3 + x$
2500.a.400000.1 2500.a \( 2^{2} \cdot 5^{4} \) $0$ $\Z/5\Z$ \(\mathrm{M}_2(\Q)\) $[860,36865,8199455,16384]$ $[1075,9750,107500,5125000,400000]$ $[\frac{459401384375}{128},\frac{1937983125}{64},\frac{9938375}{32}]$ $y^2 + (x^3 + 1)y = -2x^6 - 2x^5 + 2x^3 - 2x - 2$
2916.a.5832.1 2916.a \( 2^{2} \cdot 3^{6} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[4,369,1257,-3072]$ $[3,-138,-356,-5028,-5832]$ $[-\frac{1}{24},\frac{23}{36},\frac{89}{162}]$ $y^2 + (x^3 + 1)y = x^3$
2916.a.139968.1 2916.a \( 2^{2} \cdot 3^{6} \) $0$ $\Z/3\Z\oplus\Z/9\Z$ \(\mathrm{M}_2(\Q)\) $[324,12609,1778337,73728]$ $[243,-2268,-314496,-20391588,139968]$ $[\frac{387420489}{64},-\frac{3720087}{16},-132678]$ $y^2 + (x^2 + x + 1)y = x^6 - 3x^5 + 5x^4 - 6x^3 + x$
3969.d.250047.1 3969.d \( 3^{4} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[452,-15543,-660459,131712]$ $[339,10617,-211009,-46063185,250047]$ $[\frac{18424351793}{1029},\frac{5106412483}{3087},-\frac{2694373921}{27783}]$ $y^2 + (x^2 + x + 1)y = -3x^5 + 5x^4 - 4x^3 + x$
4608.a.4608.1 4608.a \( 2^{9} \cdot 3^{2} \) $0$ $\Z/4\Z$ \(\mathrm{M}_2(\Q)\) $[152,109,5469,18]$ $[304,3560,50688,683888,4608]$ $[\frac{5071050752}{9},\frac{195344320}{9},1016576]$ $y^2 + x^3y = x^4 + 2x^2 + 2$
4608.b.4608.1 4608.b \( 2^{9} \cdot 3^{2} \) $0$ $\Z/4\Z$ \(\mathrm{M}_2(\Q)\) $[152,109,5469,18]$ $[304,3560,50688,683888,4608]$ $[\frac{5071050752}{9},\frac{195344320}{9},1016576]$ $y^2 + x^3y = -x^4 + 2x^2 - 2$
6400.b.12800.1 6400.b \( 2^{8} \cdot 5^{2} \) $0$ $\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[248,181,14873,50]$ $[496,9768,243200,6303344,12800]$ $[\frac{58632501248}{25},\frac{2327987904}{25},4674304]$ $y^2 + x^3y = 2x^4 + 4x^2 + 2$
6400.d.12800.1 6400.d \( 2^{8} \cdot 5^{2} \) $1$ $\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[248,181,14873,50]$ $[496,9768,243200,6303344,12800]$ $[\frac{58632501248}{25},\frac{2327987904}{25},4674304]$ $y^2 + x^3y = -2x^4 + 4x^2 - 2$
9216.a.36864.1 9216.a \( 2^{10} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[46,-44,-72,144]$ $[92,470,-684,-70957,36864]$ $[\frac{6436343}{36},\frac{2859245}{288},-\frac{10051}{64}]$ $y^2 = x^5 + x^3 + x$
25600.a.102400.1 25600.a \( 2^{10} \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[94,244,7096,400]$ $[188,822,-1100,-220621,102400]$ $[\frac{229345007}{100},\frac{42671253}{800},-\frac{24299}{64}]$ $y^2 = x^5 - 3x^3 + x$
25600.f.512000.1 25600.f \( 2^{10} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[566,2164,432824,2000]$ $[1132,47622,2094500,25779779,512000]$ $[\frac{1815232161643}{500},\frac{539680767657}{4000},\frac{335492821}{64}]$ $y^2 = 2x^5 - 5x^4 - x^3 + 5x^2 + 2x$
26244.c.157464.1 26244.c \( 2^{2} \cdot 3^{8} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[60,945,2295,82944]$ $[45,-270,3780,24300,157464]$ $[\frac{9375}{8},-\frac{625}{4},\frac{875}{18}]$ $y^2 + (x^3 + 1)y = 2x^3$
36864.b.36864.1 36864.b \( 2^{12} \cdot 3^{2} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[46,-44,-72,144]$ $[92,470,-684,-70957,36864]$ $[\frac{6436343}{36},\frac{2859245}{288},-\frac{10051}{64}]$ $y^2 = x^5 - x^3 + x$
102400.e.102400.1 102400.e \( 2^{12} \cdot 5^{2} \) $0$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[94,244,7096,400]$ $[188,822,-1100,-220621,102400]$ $[\frac{229345007}{100},\frac{42671253}{800},-\frac{24299}{64}]$ $y^2 = x^5 + 3x^3 + x$
236196.a.472392.1 236196.a \( 2^{2} \cdot 3^{10} \) $1$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[356,3969,419553,248832]$ $[267,1482,-2884,-741588,472392]$ $[\frac{5584059449}{1944},\frac{174127343}{2916},-\frac{5711041}{13122}]$ $y^2 + (x^3 + 1)y = -x^6 - 1$
278784.a.557568.1 278784.a \( 2^{8} \cdot 3^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[1592,1189,630369,2178]$ $[3184,419240,73041408,14200416368,557568]$ $[\frac{639139022845952}{1089},\frac{26430898598080}{1089},1328059136]$ $y^2 + y = 6x^6 - 8x^4 + 4x^2 - 1$
278784.b.557568.1 278784.b \( 2^{8} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[1592,1189,630369,2178]$ $[3184,419240,73041408,14200416368,557568]$ $[\frac{639139022845952}{1089},\frac{26430898598080}{1089},1328059136]$ $y^2 + y = -6x^6 - 8x^4 - 4x^2 - 1$
589824.a.589824.1 589824.a \( 2^{16} \cdot 3^{2} \) $0$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[68,124,2616,72]$ $[272,1760,-2304,-931072,589824]$ $[\frac{22717712}{9},\frac{540430}{9},-289]$ $y^2 = x^5 - 4x^3 + x$
589824.b.589824.1 589824.b \( 2^{16} \cdot 3^{2} \) $2$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[68,124,2616,72]$ $[272,1760,-2304,-931072,589824]$ $[\frac{22717712}{9},\frac{540430}{9},-289]$ $y^2 = x^5 + 4x^3 + x$
778752.b.778752.1 778752.b \( 2^{9} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[1880,1405,879765,3042]$ $[3760,585320,120706560,27814290800,778752]$ $[\frac{1467808044800000}{1521},\frac{60769678360000}{1521},2191328000]$ $y^2 + y = 6x^6 - 10x^4 + 5x^2 - 1$
778752.c.778752.1 778752.c \( 2^{9} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[1880,1405,879765,3042]$ $[3760,585320,120706560,27814290800,778752]$ $[\frac{1467808044800000}{1521},\frac{60769678360000}{1521},2191328000]$ $y^2 + y = -6x^6 - 10x^4 - 5x^2 - 1$
  displayed columns for results