Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
196.a.21952.1 196.a \( 2^{2} \cdot 7^{2} \) $0$ $\Z/6\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[1340,1345,149855,2809856]$ $[335,4620,90160,2214800,21952]$ $[\frac{4219140959375}{21952},\frac{6203236875}{784},\frac{12905875}{28}]$ $y^2 + (x^2 + x)y = x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1$
400.a.409600.1 400.a \( 2^{4} \cdot 5^{2} \) $0$ $\Z/3\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[248,181,14873,50]$ $[992,39072,1945600,100853504,409600]$ $[\frac{58632501248}{25},\frac{2327987904}{25},4674304]$ $y^2 = x^6 + 4x^4 + 4x^2 + 1$
576.b.147456.1 576.b \( 2^{6} \cdot 3^{2} \) $0$ $\Z/4\Z\oplus\Z/4\Z$ \(\mathrm{M}_2(\Q)\) $[152,109,5469,18]$ $[608,14240,405504,10942208,147456]$ $[\frac{5071050752}{9},\frac{195344320}{9},1016576]$ $y^2 = x^6 + 2x^4 + 2x^2 + 1$
676.b.17576.1 676.b \( 2^{2} \cdot 13^{2} \) $0$ $\Z/3\Z\oplus\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[1244,1249,129167,2249728]$ $[311,3978,72332,1667692,17576]$ $[\frac{2909390022551}{17576},\frac{4602275343}{676},\frac{10349147}{26}]$ $y^2 + (x^2 + x)y = -x^6 + 3x^5 - 6x^4 + 6x^3 - 6x^2 + 3x - 1$
2304.b.147456.1 2304.b \( 2^{8} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[152,109,5469,18]$ $[608,14240,405504,10942208,147456]$ $[\frac{5071050752}{9},\frac{195344320}{9},1016576]$ $y^2 = -x^6 - 2x^4 - 2x^2 - 1$
6400.i.409600.1 6400.i \( 2^{8} \cdot 5^{2} \) $0$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[248,181,14873,50]$ $[992,39072,1945600,100853504,409600]$ $[\frac{58632501248}{25},\frac{2327987904}{25},4674304]$ $y^2 = -x^6 - 4x^4 - 4x^2 - 1$
38416.a.614656.1 38416.a \( 2^{4} \cdot 7^{4} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[398,9016,912086,2401]$ $[796,2358,-2348,-1857293,614656]$ $[\frac{1248318403996}{2401},\frac{9291226221}{4802},-\frac{23245787}{9604}]$ $y^2 = x^6 - 3x^5 - x^4 + 7x^3 - x^2 - 3x + 1$
614656.a.614656.1 614656.a \( 2^{8} \cdot 7^{4} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[398,9016,912086,2401]$ $[796,2358,-2348,-1857293,614656]$ $[\frac{1248318403996}{2401},\frac{9291226221}{4802},-\frac{23245787}{9604}]$ $y^2 = -x^6 - 3x^5 + x^4 + 7x^3 + x^2 - 3x - 1$
  displayed columns for results