Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
360.a.6480.1 |
360.a |
\( 2^{3} \cdot 3^{2} \cdot 5 \) |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(24.163379\) |
\(0.188776\) |
$[2360,11992,9047820,25920]$ |
$[1180,56018,3453120,234166319,6480]$ |
$[\frac{28596971960000}{81},\frac{1150492082200}{81},\frac{6677950400}{9}]$ |
$y^2 + (x^3 + x)y = -3x^4 + 7x^2 - 5$ |
448.a.448.2 |
448.a |
\( 2^{6} \cdot 7 \) |
\( - 2^{6} \cdot 7 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(31.171156\) |
\(0.216466\) |
$[828,16635,5308452,56]$ |
$[828,17476,-853888,-253107460,448]$ |
$[\frac{6080953884912}{7},\frac{155007628668}{7},-1306723104]$ |
$y^2 + (x^3 + x)y = -2x^4 + 7$ |
578.a.2312.1 |
578.a |
\( 2 \cdot 17^{2} \) |
\( 2^{3} \cdot 17^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(13.910299\) |
\(0.289798\) |
$[228,705,135777,295936]$ |
$[57,106,-992,-16945,2312]$ |
$[\frac{601692057}{2312},\frac{9815229}{1156},-\frac{402876}{289}]$ |
$y^2 + (x^2 + x)y = x^5 - 2x^4 + 2x^3 - 2x^2 + x$ |
600.b.30000.1 |
600.b |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3 \cdot 5^{4} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(8.316291\) |
\(0.259884\) |
$[600,18744,4690524,120000]$ |
$[300,626,-198336,-14973169,30000]$ |
$[81000000,563400,-595008]$ |
$y^2 + (x^3 + x)y = x^4 + x^2 - 3$ |
600.b.450000.1 |
600.b |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{5} \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{5} \) |
\(1.000000\) |
\(8.316291\) |
\(0.259884\) |
$[18072,38904,233095932,1800000]$ |
$[9036,3395570,1698206400,953774351375,450000]$ |
$[\frac{418329622965299904}{3125},\frac{3479436045234936}{625},\frac{38515932506304}{125}]$ |
$y^2 + (x^3 + x)y = -5x^4 + 25x^2 - 45$ |
630.a.34020.1 |
630.a |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
\( 2^{2} \cdot 3^{5} \cdot 5 \cdot 7 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(19.470889\) |
\(0.304233\) |
$[24100,969793,7474503265,4354560]$ |
$[6025,1472118,470090880,166291536519,34020]$ |
$[\frac{1587871127345703125}{6804},\frac{10732293030978125}{1134},\frac{13543327580000}{27}]$ |
$y^2 + (x^2 + x)y = 3x^5 + 10x^4 - 23x^2 - 6x + 15$ |
640.a.81920.2 |
640.a |
\( 2^{7} \cdot 5 \) |
\( 2^{14} \cdot 5 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(7.405674\) |
\(0.308570\) |
$[912,147,44562,10]$ |
$[3648,552928,111431680,25193348864,81920]$ |
$[\frac{39432490647552}{5},\frac{1638374321664}{5},18102076416]$ |
$y^2 + x^3y = -3x^4 + 13x^2 - 20$ |
644.a.659456.1 |
644.a |
\( 2^{2} \cdot 7 \cdot 23 \) |
\( 2^{12} \cdot 7 \cdot 23 \) |
$0$ |
$1$ |
$\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.720.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(0.872985\) |
\(0.218246\) |
$[161796,1070662305,46065265919409,84410368]$ |
$[40449,23560804,14638854160,9253881697856,659456]$ |
$[\frac{108277681088425330677249}{659456},\frac{389810454818831018649}{164864},\frac{9297727292338785}{256}]$ |
$y^2 + (x^2 + x)y = -3x^6 - 13x^5 + 4x^4 + 51x^3 + 4x^2 - 13x - 3$ |
686.a.686.1 |
686.a |
\( 2 \cdot 7^{3} \) |
\( 2 \cdot 7^{3} \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(11.491655\) |
\(0.319213\) |
$[420,4305,640185,87808]$ |
$[105,280,-980,-45325,686]$ |
$[\frac{37209375}{2},472500,-15750]$ |
$y^2 + (x^2 + x)y = x^5 + x^4 + 2x^3 + x^2 + x$ |
720.b.116640.1 |
720.b |
\( 2^{4} \cdot 3^{2} \cdot 5 \) |
\( 2^{5} \cdot 3^{6} \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{2} \cdot 3 \) |
\(1.000000\) |
\(14.457058\) |
\(0.301189\) |
$[35416,45688,537039964,466560]$ |
$[17708,13057938,12831384960,14177105014959,116640]$ |
$[\frac{54412363190235229024}{3645},\frac{251762275020280012}{405},\frac{310461362928064}{9}]$ |
$y^2 + (x^3 + x)y = -6x^4 + 39x^2 - 90$ |
784.a.1568.1 |
784.a |
\( 2^{4} \cdot 7^{2} \) |
\( 2^{5} \cdot 7^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(20.793351\) |
\(0.288797\) |
$[792,120,15228,6272]$ |
$[396,6514,144256,3673295,1568]$ |
$[\frac{304316815968}{49},\frac{12641055372}{49},14427072]$ |
$y^2 + (x^3 + x)y = -2x^4 + 3x^2 - 2$ |
784.b.12544.1 |
784.b |
\( 2^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 7^{2} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.360.1, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(11.270100\) |
\(0.313058\) |
$[116,445,16259,1568]$ |
$[116,264,-1280,-54544,12544]$ |
$[\frac{82044596}{49},\frac{1609674}{49},-\frac{67280}{49}]$ |
$y^2 + (x^3 + x)y = -1$ |
800.a.409600.1 |
800.a |
\( 2^{5} \cdot 5^{2} \) |
\( - 2^{14} \cdot 5^{2} \) |
$0$ |
$1$ |
$\Z/24\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$2$ |
2.90.3, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 2^{2} \cdot 3 \) |
\(1.000000\) |
\(16.770151\) |
\(0.349378\) |
$[120,309,14889,50]$ |
$[480,6304,-151552,-28121344,409600]$ |
$[62208000,1702080,-85248]$ |
$y^2 = x^6 - 2x^2 + 1$ |
864.a.442368.1 |
864.a |
\( 2^{5} \cdot 3^{3} \) |
\( 2^{14} \cdot 3^{3} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(9.071483\) |
\(0.377978\) |
$[552,45,7083,54]$ |
$[2208,202656,24809472,3427464960,442368]$ |
$[118634674176,4931431104,273421056]$ |
$y^2 = x^6 - 4x^4 + 6x^2 - 3$ |
882.a.63504.1 |
882.a |
\( 2 \cdot 3^{2} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.360.1, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(12.542623\) |
\(0.391957\) |
$[548,6049,662961,8128512]$ |
$[137,530,6336,146783,63504]$ |
$[\frac{48261724457}{63504},\frac{681408545}{31752},\frac{825836}{441}]$ |
$y^2 + (x^2 + x)y = x^5 + x^4 + x^3 + 3x^2 + 3x + 1$ |
930.a.930.1 |
930.a |
\( 2 \cdot 3 \cdot 5 \cdot 31 \) |
\( 2 \cdot 3 \cdot 5 \cdot 31 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(24.846489\) |
\(0.388226\) |
$[46596,239073,3674852529,119040]$ |
$[11649,5644172,3640360380,2637470125259,930]$ |
$[\frac{71502622649365111083}{310},\frac{1487013548016809538}{155},531176338621566]$ |
$y^2 + (x^2 + x)y = -x^5 - 7x^4 + 37x^2 - 45x + 15$ |
960.a.245760.1 |
960.a |
\( 2^{6} \cdot 3 \cdot 5 \) |
\( 2^{14} \cdot 3 \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(6.402317\) |
\(0.400145\) |
$[120,213,10095,30]$ |
$[480,7328,-15360,-15268096,245760]$ |
$[103680000,3297600,-14400]$ |
$y^2 = 2x^5 + x^4 + 4x^3 + x^2 + 2x$ |
960.a.368640.1 |
960.a |
\( 2^{6} \cdot 3 \cdot 5 \) |
\( 2^{13} \cdot 3^{2} \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(6.402317\) |
\(0.400145\) |
$[8952,6072,17987052,1440]$ |
$[17904,13340192,13237770240,14762078945024,368640]$ |
$[\frac{24952719973569408}{5},\frac{1038436236963696}{5},11510985848256]$ |
$y^2 = x^5 + 13x^4 + 44x^3 + 13x^2 + x$ |
960.a.983040.1 |
960.a |
\( 2^{6} \cdot 3 \cdot 5 \) |
\( - 2^{16} \cdot 3 \cdot 5 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(6.402317\) |
\(0.400145\) |
$[9,33,666,120]$ |
$[36,-298,-34260,-330541,983040]$ |
$[\frac{19683}{320},-\frac{36207}{2560},-\frac{46251}{1024}]$ |
$y^2 = x^5 - 2x^4 - x^3 - 2x^2 + x$ |
990.a.8910.1 |
990.a |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
\( 2 \cdot 3^{4} \cdot 5 \cdot 11 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(6.174937\) |
\(0.385934\) |
$[3268,252577,318023313,1140480]$ |
$[817,17288,-766260,-231227341,8910]$ |
$[\frac{364007458703857}{8910},\frac{4713906106372}{4455},-57404054]$ |
$y^2 + (x^2 + x)y = 3x^5 + 4x^4 + 7x^3 + 4x^2 + 3x$ |
990.a.240570.1 |
990.a |
\( 2 \cdot 3^{2} \cdot 5 \cdot 11 \) |
\( 2 \cdot 3^{7} \cdot 5 \cdot 11 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(3.087468\) |
\(0.385934\) |
$[153028,6848257,343366646113,30792960]$ |
$[38257,60697908,127876480380,301983618580299,240570]$ |
$[\frac{81951056110393451083057}{240570},\frac{188813894774599018858}{13365},\frac{7001861848004294}{9}]$ |
$y^2 + (x^2 + x)y = 3x^5 + 28x^4 + 72x^3 + 28x^2 + 3x$ |
1008.a.27216.1 |
1008.a |
\( 2^{4} \cdot 3^{2} \cdot 7 \) |
\( 2^{4} \cdot 3^{5} \cdot 7 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(12.167487\) |
\(0.380234\) |
$[8456,9496,26675348,108864]$ |
$[4228,743250,173847744,45651924783,27216]$ |
$[\frac{12063042849801664}{243},\frac{167186257609000}{81},\frac{3083035208512}{27}]$ |
$y^2 + (x^3 + x)y = -4x^4 + 15x^2 - 21$ |
1122.a.1122.1 |
1122.a |
\( 2 \cdot 3 \cdot 11 \cdot 17 \) |
\( 2 \cdot 3 \cdot 11 \cdot 17 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(6.820719\) |
\(0.426295\) |
$[56004,288321,5331417537,143616]$ |
$[14001,8155820,6325887612,5512838145803,1122]$ |
$[\frac{179338702480653356667}{374},\frac{3730727674118765970}{187},1105214886926046]$ |
$y^2 + (x^2 + x)y = x^5 + 7x^4 - 43x^2 + 51x - 17$ |
1152.a.147456.1 |
1152.a |
\( 2^{7} \cdot 3^{2} \) |
\( 2^{14} \cdot 3^{2} \) |
$0$ |
$1$ |
$\Z/8\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\Q \times \Q\) |
✓ |
$J(E_1)$ |
|
|
|
$C_2^2$ |
$D_4$ |
$4$ |
$2$ |
2.180.5, 3.1080.10 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(7.270694\) |
\(0.454418\) |
$[152,109,5469,18]$ |
$[608,14240,405504,10942208,147456]$ |
$[\frac{5071050752}{9},\frac{195344320}{9},1016576]$ |
$y^2 = x^6 - 2x^4 + 2x^2 - 1$ |
1200.a.30000.1 |
1200.a |
\( 2^{4} \cdot 3 \cdot 5^{2} \) |
\( - 2^{4} \cdot 3 \cdot 5^{4} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(22.621485\) |
\(0.353461\) |
$[600,18744,4690524,120000]$ |
$[300,626,-198336,-14973169,30000]$ |
$[81000000,563400,-595008]$ |
$y^2 + (x^3 + x)y = -2x^4 + x^2 + 3$ |
1320.a.2640.1 |
1320.a |
\( 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
\( 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(17.746741\) |
\(0.554586\) |
$[63768,10392,220729308,10560]$ |
$[31884,42356162,75020763840,149479393726079,2640]$ |
$[\frac{686471900571962215488}{55},\frac{28601826290311163976}{55},28888377841215936]$ |
$y^2 + (x^3 + x)y = -x^6 + 9x^4 - 40x^2 + 55$ |
1344.a.4032.2 |
1344.a |
\( 2^{6} \cdot 3 \cdot 7 \) |
\( 2^{6} \cdot 3^{2} \cdot 7 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.270.2 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(13.382426\) |
\(0.418201\) |
$[48576,2301,37257288,504]$ |
$[48576,98316290,265314615552,805457471422463,4032]$ |
$[\frac{469554780013829554176}{7},\frac{19564477241823191040}{7},155268783788507136]$ |
$y^2 + xy = -x^6 + 12x^4 - 48x^2 + 63$ |
1344.b.172032.1 |
1344.b |
\( 2^{6} \cdot 3 \cdot 7 \) |
\( 2^{13} \cdot 3 \cdot 7 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(15.087817\) |
\(0.471494\) |
$[4248,2904,4071996,672]$ |
$[8496,2999840,1408899072,742741622528,172032]$ |
$[\frac{1801197437083776}{7},\frac{74856652932240}{7},591152665536]$ |
$y^2 = x^5 - 11x^4 + 32x^3 - 11x^2 + x$ |
1350.a.5400.1 |
1350.a |
\( 2 \cdot 3^{3} \cdot 5^{2} \) |
\( 2^{3} \cdot 3^{3} \cdot 5^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(22.247707\) |
\(0.463494\) |
$[1380,3969,1536129,691200]$ |
$[345,4794,89568,1979631,5400]$ |
$[\frac{7240885875}{8},\frac{145821495}{4},1974228]$ |
$y^2 + (x^2 + x)y = x^5 + 4x^4 + 4x^3 - x^2 + 3$ |
1350.c.656100.1 |
1350.c |
\( 2 \cdot 3^{3} \cdot 5^{2} \) |
\( 2^{2} \cdot 3^{8} \cdot 5^{2} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.360.1, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{2} \cdot 3 \) |
\(1.000000\) |
\(6.178250\) |
\(0.514854\) |
$[364,3529,393211,345600]$ |
$[273,1782,0,-793881,656100]$ |
$[\frac{6240321451}{2700},\frac{8289281}{150},0]$ |
$y^2 + (x^2 + x)y = x^5 + x^4 + 4x^3 + x^2 + x$ |
1386.a.9702.1 |
1386.a |
\( 2 \cdot 3^{2} \cdot 7 \cdot 11 \) |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(3.977728\) |
\(0.497216\) |
$[472004,2486881,389970923697,1241856]$ |
$[118001,580072880,3801391710732,28020869286648083,9702]$ |
$[\frac{22878546973310459240590001}{9702},\frac{476551267590924869796440}{4851},5455728232578591266]$ |
$y^2 + (x^2 + x)y = x^5 + 20x^4 + 104x^3 + 20x^2 + x$ |
1536.b.49152.1 |
1536.b |
\( 2^{9} \cdot 3 \) |
\( 2^{14} \cdot 3 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.3, 3.270.2 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(15.993364\) |
\(0.499793\) |
$[624,141,29202,6]$ |
$[2496,258080,35377152,5424021248,49152]$ |
$[1970977701888,81648253440,4484054016]$ |
$y^2 + x^3y = -3x^4 + 11x^2 - 12$ |
1584.a.684288.1 |
1584.a |
\( 2^{4} \cdot 3^{2} \cdot 11 \) |
\( 2^{8} \cdot 3^{5} \cdot 11 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(4.753791\) |
\(0.594224\) |
$[7444,76621,183223627,85536]$ |
$[7444,2257800,897608448,396034111728,684288]$ |
$[\frac{89287745446261204}{2673},\frac{1212671977685150}{891},\frac{1962567037712}{27}]$ |
$y^2 + (x^3 + x)y = -x^6 + 6x^4 - 17x^2 + 11$ |
1600.b.409600.1 |
1600.b |
\( 2^{6} \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{2} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\Q \times \Q\) |
✓ |
$J(E_1)$ |
|
|
|
$C_2^2$ |
$D_4$ |
$4$ |
$2$ |
2.360.1, 3.8640.8 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(12.846191\) |
\(0.535258\) |
$[248,181,14873,50]$ |
$[992,39072,1945600,100853504,409600]$ |
$[\frac{58632501248}{25},\frac{2327987904}{25},4674304]$ |
$y^2 = x^6 - 4x^4 + 4x^2 - 1$ |
1650.a.371250.1 |
1650.a |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( 2 \cdot 3^{3} \cdot 5^{4} \cdot 11 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(13.792193\) |
\(0.574675\) |
$[30180,172689,1721884569,47520000]$ |
$[7545,2364764,985411548,460705338491,371250]$ |
$[\frac{1448946796623435}{22},\frac{150474103581314}{55},\frac{3777545308302}{25}]$ |
$y^2 + (x^2 + x)y = x^5 - 11x^4 + 30x^3 - 11x^2 + x$ |
1680.c.241920.1 |
1680.c |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \) |
\( 2^{8} \cdot 3^{3} \cdot 5 \cdot 7 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(11.725763\) |
\(0.488573\) |
$[182340,50613,3073006935,30240]$ |
$[182340,1385294408,14032351630080,159904599848179184,241920]$ |
$[\frac{5832248478791381977500}{7},\frac{243004434356588125950}{7},1928513067842084400]$ |
$y^2 + (x^2 + 1)y = 135x^6 - 96x^4 + 22x^2 - 2$ |
1734.b.41616.1 |
1734.b |
\( 2 \cdot 3 \cdot 17^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 17^{2} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.360.1, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(18.313438\) |
\(0.572295\) |
$[7812,49809,127407609,5326848]$ |
$[1953,156850,16599744,1954344383,41616]$ |
$[\frac{3156957294162777}{4624},\frac{64911066959025}{2312},\frac{439686756684}{289}]$ |
$y^2 + (x^2 + x)y = x^6 - 3x^5 - x^4 + 6x^3 - 4x - 1$ |
1780.a.7120.1 |
1780.a |
\( 2^{2} \cdot 5 \cdot 89 \) |
\( 2^{4} \cdot 5 \cdot 89 \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(8.034245\) |
\(0.669520\) |
$[170536,7408,420810124,28480]$ |
$[85268,302941758,1435057103680,7647685094113919,7120]$ |
$[\frac{281715277785121030806848}{445},\frac{11738088734732624155416}{445},1465417394279926336]$ |
$y^2 + (x^3 + x)y = x^6 - 16x^4 + 64x^2 - 89$ |
1800.a.3600.1 |
1800.a |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
$0$ |
$1$ |
$\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.180.5, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(13.948999\) |
\(0.435906\) |
$[280,856,70812,14400]$ |
$[140,674,4032,27551,3600]$ |
$[\frac{134456000}{9},\frac{4623640}{9},21952]$ |
$y^2 + (x^3 + x)y = -x^4 + x^2 - 1$ |
1872.a.1872.1 |
1872.a |
\( 2^{4} \cdot 3^{2} \cdot 13 \) |
\( 2^{4} \cdot 3^{2} \cdot 13 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(11.148715\) |
\(0.696795\) |
$[45352,11224,169415364,7488]$ |
$[22676,21423170,26983749312,38232821637503,1872]$ |
$[\frac{374724646811252438336}{117},\frac{15612163699641478120}{117},7411896491650496]$ |
$y^2 + (x^3 + x)y = -x^6 + 8x^4 - 32x^2 + 39$ |
1950.a.97500.1 |
1950.a |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( 2^{2} \cdot 3 \cdot 5^{4} \cdot 13 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{3} \) |
\(1.000000\) |
\(4.383086\) |
\(0.547886\) |
$[3492,996801,1494257697,12480000]$ |
$[873,-9778,-9141600,-2019056521,97500]$ |
$[\frac{169024618278531}{32500},-\frac{1084280166171}{16250},-\frac{1786430376}{25}]$ |
$y^2 + (x^2 + x)y = 5x^5 + 12x^4 + 17x^3 + 12x^2 + 5x$ |
1950.a.105300.1 |
1950.a |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( 2^{2} \cdot 3^{4} \cdot 5^{2} \cdot 13 \) |
$0$ |
$4$ |
$\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.180.3, 3.90.1 |
✓ |
✓ |
$4$ |
\( 2^{2} \) |
\(1.000000\) |
\(2.191543\) |
\(0.547886\) |
$[5075172,26967201,45574441613937,13478400]$ |
$[1268793,67075362902,4727883958948800,374900440872881734199,105300]$ |
$[\frac{40594654631047811822360650953}{1300},\frac{845707804348247976930324147}{650},72280306487349203974704]$ |
$y^2 + (x^2 + x)y = x^5 + 36x^4 + 330x^3 + 36x^2 + x$ |
2080.a.4160.2 |
2080.a |
\( 2^{5} \cdot 5 \cdot 13 \) |
\( 2^{6} \cdot 5 \cdot 13 \) |
$1$ |
$2$ |
$\Z/4\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.270.2 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.375514\) |
\(7.057076\) |
\(0.331254\) |
$[49728,2307,38240328,520]$ |
$[49728,103034878,284642525440,884629355151359,4160]$ |
$[\frac{4751437160558113062912}{65},\frac{197973593207882440704}{65},169203148053037056]$ |
$y^2 + xy = x^6 - 12x^4 + 48x^2 - 65$ |
2156.a.17248.1 |
2156.a |
\( 2^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{5} \cdot 7^{2} \cdot 11 \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(7.251618\) |
\(0.402868\) |
$[452,24145,4532153,2207744]$ |
$[113,-474,-28028,-847960,17248]$ |
$[\frac{18424351793}{17248},-\frac{341966589}{8624},-\frac{165997}{8}]$ |
$y^2 + (x^2 + x)y = 2x^5 + 5x^4 + 7x^3 + 5x^2 + 2x$ |
2156.b.34496.1 |
2156.b |
\( 2^{2} \cdot 7^{2} \cdot 11 \) |
\( 2^{6} \cdot 7^{2} \cdot 11 \) |
$1$ |
$2$ |
$\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$8$ |
$2$ |
2.90.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(0.123039\) |
\(21.055838\) |
\(0.287853\) |
$[2916,41745,37024569,4415488]$ |
$[729,20404,734800,29836496,34496]$ |
$[\frac{205891132094649}{34496},\frac{1976231914389}{8624},\frac{2218766175}{196}]$ |
$y^2 + (x^2 + x)y = 2x^5 - x^4 - 5x^3 + 3x + 1$ |
2176.a.69632.1 |
2176.a |
\( 2^{7} \cdot 17 \) |
\( 2^{12} \cdot 17 \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\mathsf{CM} \times \Q\) |
\(\Q \times \Q\) |
✓ |
$N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.5 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(16.670591\) |
\(0.694608\) |
$[7572,68115,166006308,272]$ |
$[15144,9374224,7623276544,6892706095040,69632]$ |
$[\frac{194465720403941544}{17},\frac{7948719687495546}{17},25108109106912]$ |
$y^2 + xy = x^6 - 9x^4 + 24x^2 - 17$ |
2178.b.176418.1 |
2178.b |
\( 2 \cdot 3^{2} \cdot 11^{2} \) |
\( - 2 \cdot 3^{6} \cdot 11^{2} \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.720.4 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(7.148372\) |
\(0.595698\) |
$[548,11665,1545177,-22581504]$ |
$[137,296,2988,80435,-176418]$ |
$[-\frac{48261724457}{176418},-\frac{380560244}{88209},-\frac{3115654}{9801}]$ |
$y^2 + (x^2 + x)y = x^5 - x^4 - 3x^3 - x^2 + x$ |
2250.a.2250.1 |
2250.a |
\( 2 \cdot 3^{2} \cdot 5^{3} \) |
\( 2 \cdot 3^{2} \cdot 5^{3} \) |
$0$ |
$1$ |
$\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$2$ |
2.90.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(9.912120\) |
\(0.619507\) |
$[260,3745,313425,288000]$ |
$[65,20,-900,-14725,2250]$ |
$[\frac{9282325}{18},\frac{21970}{9},-1690]$ |
$y^2 + (x^2 + x)y = x^5 + 2x^4 + 3x^3 + 2x^2 + x$ |
2250.a.324000.1 |
2250.a |
\( 2 \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{5} \cdot 3^{4} \cdot 5^{3} \) |
$0$ |
$1$ |
$\Z/20\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 5^{2} \) |
\(1.000000\) |
\(9.912120\) |
\(0.619507\) |
$[69380,4945,101804825,41472000]$ |
$[17345,12535170,12078806400,13094102519775,324000]$ |
$[\frac{12559186449637208725}{2592},\frac{87215139004189255}{432},\frac{33647195635220}{3}]$ |
$y^2 + (x^2 + x)y = 3x^5 - 13x^3 + 16x^2 + 65x + 40$ |
2312.b.4624.1 |
2312.b |
\( 2^{3} \cdot 17^{2} \) |
\( - 2^{4} \cdot 17^{2} \) |
$1$ |
$2$ |
$\Z/8\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$6$ |
$2$ |
2.90.3, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(0.463016\) |
\(24.054649\) |
\(0.348053\) |
$[264,696,86772,18496]$ |
$[132,610,-64,-95137,4624]$ |
$[\frac{2504665152}{289},\frac{87686280}{289},-\frac{69696}{289}]$ |
$y^2 + (x^3 + x)y = -x^4 - x^2 + 1$ |