Learn more

Refine search


Results (1-50 of 476 matches)

Next   displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
360.a.6480.1 360.a \( 2^{3} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/8\Z$ \(\Q \times \Q\) $[2360,11992,9047820,25920]$ $[1180,56018,3453120,234166319,6480]$ $[\frac{28596971960000}{81},\frac{1150492082200}{81},\frac{6677950400}{9}]$ $y^2 + (x^3 + x)y = -3x^4 + 7x^2 - 5$
448.a.448.2 448.a \( 2^{6} \cdot 7 \) $0$ $\Z/12\Z$ \(\mathsf{CM} \times \Q\) $[828,16635,5308452,56]$ $[828,17476,-853888,-253107460,448]$ $[\frac{6080953884912}{7},\frac{155007628668}{7},-1306723104]$ $y^2 + (x^3 + x)y = -2x^4 + 7$
578.a.2312.1 578.a \( 2 \cdot 17^{2} \) $0$ $\Z/12\Z$ \(\Q \times \Q\) $[228,705,135777,295936]$ $[57,106,-992,-16945,2312]$ $[\frac{601692057}{2312},\frac{9815229}{1156},-\frac{402876}{289}]$ $y^2 + (x^2 + x)y = x^5 - 2x^4 + 2x^3 - 2x^2 + x$
600.b.30000.1 600.b \( 2^{3} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q \times \Q\) $[600,18744,4690524,120000]$ $[300,626,-198336,-14973169,30000]$ $[81000000,563400,-595008]$ $y^2 + (x^3 + x)y = x^4 + x^2 - 3$
600.b.450000.1 600.b \( 2^{3} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/8\Z$ \(\Q \times \Q\) $[18072,38904,233095932,1800000]$ $[9036,3395570,1698206400,953774351375,450000]$ $[\frac{418329622965299904}{3125},\frac{3479436045234936}{625},\frac{38515932506304}{125}]$ $y^2 + (x^3 + x)y = -5x^4 + 25x^2 - 45$
630.a.34020.1 630.a \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[24100,969793,7474503265,4354560]$ $[6025,1472118,470090880,166291536519,34020]$ $[\frac{1587871127345703125}{6804},\frac{10732293030978125}{1134},\frac{13543327580000}{27}]$ $y^2 + (x^2 + x)y = 3x^5 + 10x^4 - 23x^2 - 6x + 15$
640.a.81920.2 640.a \( 2^{7} \cdot 5 \) $0$ $\Z/12\Z$ \(\mathsf{CM} \times \Q\) $[912,147,44562,10]$ $[3648,552928,111431680,25193348864,81920]$ $[\frac{39432490647552}{5},\frac{1638374321664}{5},18102076416]$ $y^2 + x^3y = -3x^4 + 13x^2 - 20$
644.a.659456.1 644.a \( 2^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ \(\Q \times \Q\) $[161796,1070662305,46065265919409,84410368]$ $[40449,23560804,14638854160,9253881697856,659456]$ $[\frac{108277681088425330677249}{659456},\frac{389810454818831018649}{164864},\frac{9297727292338785}{256}]$ $y^2 + (x^2 + x)y = -3x^6 - 13x^5 + 4x^4 + 51x^3 + 4x^2 - 13x - 3$
686.a.686.1 686.a \( 2 \cdot 7^{3} \) $0$ $\Z/6\Z$ \(\mathsf{CM} \times \Q\) $[420,4305,640185,87808]$ $[105,280,-980,-45325,686]$ $[\frac{37209375}{2},472500,-15750]$ $y^2 + (x^2 + x)y = x^5 + x^4 + 2x^3 + x^2 + x$
720.b.116640.1 720.b \( 2^{4} \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/12\Z$ \(\Q \times \Q\) $[35416,45688,537039964,466560]$ $[17708,13057938,12831384960,14177105014959,116640]$ $[\frac{54412363190235229024}{3645},\frac{251762275020280012}{405},\frac{310461362928064}{9}]$ $y^2 + (x^3 + x)y = -6x^4 + 39x^2 - 90$
784.a.1568.1 784.a \( 2^{4} \cdot 7^{2} \) $0$ $\Z/12\Z$ \(\Q \times \Q\) $[792,120,15228,6272]$ $[396,6514,144256,3673295,1568]$ $[\frac{304316815968}{49},\frac{12641055372}{49},14427072]$ $y^2 + (x^3 + x)y = -2x^4 + 3x^2 - 2$
784.b.12544.1 784.b \( 2^{4} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\Q \times \Q\) $[116,445,16259,1568]$ $[116,264,-1280,-54544,12544]$ $[\frac{82044596}{49},\frac{1609674}{49},-\frac{67280}{49}]$ $y^2 + (x^3 + x)y = -1$
800.a.409600.1 800.a \( 2^{5} \cdot 5^{2} \) $0$ $\Z/24\Z$ \(\Q \times \Q\) $[120,309,14889,50]$ $[480,6304,-151552,-28121344,409600]$ $[62208000,1702080,-85248]$ $y^2 = x^6 - 2x^2 + 1$
864.a.442368.1 864.a \( 2^{5} \cdot 3^{3} \) $0$ $\Z/12\Z$ \(\mathsf{CM} \times \Q\) $[552,45,7083,54]$ $[2208,202656,24809472,3427464960,442368]$ $[118634674176,4931431104,273421056]$ $y^2 = x^6 - 4x^4 + 6x^2 - 3$
882.a.63504.1 882.a \( 2 \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q \times \Q\) $[548,6049,662961,8128512]$ $[137,530,6336,146783,63504]$ $[\frac{48261724457}{63504},\frac{681408545}{31752},\frac{825836}{441}]$ $y^2 + (x^2 + x)y = x^5 + x^4 + x^3 + 3x^2 + 3x + 1$
930.a.930.1 930.a \( 2 \cdot 3 \cdot 5 \cdot 31 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[46596,239073,3674852529,119040]$ $[11649,5644172,3640360380,2637470125259,930]$ $[\frac{71502622649365111083}{310},\frac{1487013548016809538}{155},531176338621566]$ $y^2 + (x^2 + x)y = -x^5 - 7x^4 + 37x^2 - 45x + 15$
960.a.245760.1 960.a \( 2^{6} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[120,213,10095,30]$ $[480,7328,-15360,-15268096,245760]$ $[103680000,3297600,-14400]$ $y^2 = 2x^5 + x^4 + 4x^3 + x^2 + 2x$
960.a.368640.1 960.a \( 2^{6} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[8952,6072,17987052,1440]$ $[17904,13340192,13237770240,14762078945024,368640]$ $[\frac{24952719973569408}{5},\frac{1038436236963696}{5},11510985848256]$ $y^2 = x^5 + 13x^4 + 44x^3 + 13x^2 + x$
960.a.983040.1 960.a \( 2^{6} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[9,33,666,120]$ $[36,-298,-34260,-330541,983040]$ $[\frac{19683}{320},-\frac{36207}{2560},-\frac{46251}{1024}]$ $y^2 = x^5 - 2x^4 - x^3 - 2x^2 + x$
990.a.8910.1 990.a \( 2 \cdot 3^{2} \cdot 5 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[3268,252577,318023313,1140480]$ $[817,17288,-766260,-231227341,8910]$ $[\frac{364007458703857}{8910},\frac{4713906106372}{4455},-57404054]$ $y^2 + (x^2 + x)y = 3x^5 + 4x^4 + 7x^3 + 4x^2 + 3x$
990.a.240570.1 990.a \( 2 \cdot 3^{2} \cdot 5 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[153028,6848257,343366646113,30792960]$ $[38257,60697908,127876480380,301983618580299,240570]$ $[\frac{81951056110393451083057}{240570},\frac{188813894774599018858}{13365},\frac{7001861848004294}{9}]$ $y^2 + (x^2 + x)y = 3x^5 + 28x^4 + 72x^3 + 28x^2 + 3x$
1008.a.27216.1 1008.a \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q \times \Q\) $[8456,9496,26675348,108864]$ $[4228,743250,173847744,45651924783,27216]$ $[\frac{12063042849801664}{243},\frac{167186257609000}{81},\frac{3083035208512}{27}]$ $y^2 + (x^3 + x)y = -4x^4 + 15x^2 - 21$
1122.a.1122.1 1122.a \( 2 \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[56004,288321,5331417537,143616]$ $[14001,8155820,6325887612,5512838145803,1122]$ $[\frac{179338702480653356667}{374},\frac{3730727674118765970}{187},1105214886926046]$ $y^2 + (x^2 + x)y = x^5 + 7x^4 - 43x^2 + 51x - 17$
1152.a.147456.1 1152.a \( 2^{7} \cdot 3^{2} \) $0$ $\Z/8\Z$ \(\mathrm{M}_2(\Q)\) $[152,109,5469,18]$ $[608,14240,405504,10942208,147456]$ $[\frac{5071050752}{9},\frac{195344320}{9},1016576]$ $y^2 = x^6 - 2x^4 + 2x^2 - 1$
1200.a.30000.1 1200.a \( 2^{4} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q \times \Q\) $[600,18744,4690524,120000]$ $[300,626,-198336,-14973169,30000]$ $[81000000,563400,-595008]$ $y^2 + (x^3 + x)y = -2x^4 + x^2 + 3$
1320.a.2640.1 1320.a \( 2^{3} \cdot 3 \cdot 5 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[63768,10392,220729308,10560]$ $[31884,42356162,75020763840,149479393726079,2640]$ $[\frac{686471900571962215488}{55},\frac{28601826290311163976}{55},28888377841215936]$ $y^2 + (x^3 + x)y = -x^6 + 9x^4 - 40x^2 + 55$
1344.a.4032.2 1344.a \( 2^{6} \cdot 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\mathsf{CM} \times \Q\) $[48576,2301,37257288,504]$ $[48576,98316290,265314615552,805457471422463,4032]$ $[\frac{469554780013829554176}{7},\frac{19564477241823191040}{7},155268783788507136]$ $y^2 + xy = -x^6 + 12x^4 - 48x^2 + 63$
1344.b.172032.1 1344.b \( 2^{6} \cdot 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[4248,2904,4071996,672]$ $[8496,2999840,1408899072,742741622528,172032]$ $[\frac{1801197437083776}{7},\frac{74856652932240}{7},591152665536]$ $y^2 = x^5 - 11x^4 + 32x^3 - 11x^2 + x$
1350.a.5400.1 1350.a \( 2 \cdot 3^{3} \cdot 5^{2} \) $0$ $\Z/12\Z$ \(\Q \times \Q\) $[1380,3969,1536129,691200]$ $[345,4794,89568,1979631,5400]$ $[\frac{7240885875}{8},\frac{145821495}{4},1974228]$ $y^2 + (x^2 + x)y = x^5 + 4x^4 + 4x^3 - x^2 + 3$
1350.c.656100.1 1350.c \( 2 \cdot 3^{3} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\Q \times \Q\) $[364,3529,393211,345600]$ $[273,1782,0,-793881,656100]$ $[\frac{6240321451}{2700},\frac{8289281}{150},0]$ $y^2 + (x^2 + x)y = x^5 + x^4 + 4x^3 + x^2 + x$
1386.a.9702.1 1386.a \( 2 \cdot 3^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[472004,2486881,389970923697,1241856]$ $[118001,580072880,3801391710732,28020869286648083,9702]$ $[\frac{22878546973310459240590001}{9702},\frac{476551267590924869796440}{4851},5455728232578591266]$ $y^2 + (x^2 + x)y = x^5 + 20x^4 + 104x^3 + 20x^2 + x$
1536.b.49152.1 1536.b \( 2^{9} \cdot 3 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\mathsf{CM} \times \Q\) $[624,141,29202,6]$ $[2496,258080,35377152,5424021248,49152]$ $[1970977701888,81648253440,4484054016]$ $y^2 + x^3y = -3x^4 + 11x^2 - 12$
1584.a.684288.1 1584.a \( 2^{4} \cdot 3^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[7444,76621,183223627,85536]$ $[7444,2257800,897608448,396034111728,684288]$ $[\frac{89287745446261204}{2673},\frac{1212671977685150}{891},\frac{1962567037712}{27}]$ $y^2 + (x^3 + x)y = -x^6 + 6x^4 - 17x^2 + 11$
1600.b.409600.1 1600.b \( 2^{6} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[248,181,14873,50]$ $[992,39072,1945600,100853504,409600]$ $[\frac{58632501248}{25},\frac{2327987904}{25},4674304]$ $y^2 = x^6 - 4x^4 + 4x^2 - 1$
1650.a.371250.1 1650.a \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\Q \times \Q\) $[30180,172689,1721884569,47520000]$ $[7545,2364764,985411548,460705338491,371250]$ $[\frac{1448946796623435}{22},\frac{150474103581314}{55},\frac{3777545308302}{25}]$ $y^2 + (x^2 + x)y = x^5 - 11x^4 + 30x^3 - 11x^2 + x$
1680.c.241920.1 1680.c \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\Q \times \Q\) $[182340,50613,3073006935,30240]$ $[182340,1385294408,14032351630080,159904599848179184,241920]$ $[\frac{5832248478791381977500}{7},\frac{243004434356588125950}{7},1928513067842084400]$ $y^2 + (x^2 + 1)y = 135x^6 - 96x^4 + 22x^2 - 2$
1734.b.41616.1 1734.b \( 2 \cdot 3 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q \times \Q\) $[7812,49809,127407609,5326848]$ $[1953,156850,16599744,1954344383,41616]$ $[\frac{3156957294162777}{4624},\frac{64911066959025}{2312},\frac{439686756684}{289}]$ $y^2 + (x^2 + x)y = x^6 - 3x^5 - x^4 + 6x^3 - 4x - 1$
1780.a.7120.1 1780.a \( 2^{2} \cdot 5 \cdot 89 \) $0$ $\Z/6\Z$ \(\Q \times \Q\) $[170536,7408,420810124,28480]$ $[85268,302941758,1435057103680,7647685094113919,7120]$ $[\frac{281715277785121030806848}{445},\frac{11738088734732624155416}{445},1465417394279926336]$ $y^2 + (x^3 + x)y = x^6 - 16x^4 + 64x^2 - 89$
1800.a.3600.1 1800.a \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/8\Z$ \(\Q \times \Q\) $[280,856,70812,14400]$ $[140,674,4032,27551,3600]$ $[\frac{134456000}{9},\frac{4623640}{9},21952]$ $y^2 + (x^3 + x)y = -x^4 + x^2 - 1$
1872.a.1872.1 1872.a \( 2^{4} \cdot 3^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q \times \Q\) $[45352,11224,169415364,7488]$ $[22676,21423170,26983749312,38232821637503,1872]$ $[\frac{374724646811252438336}{117},\frac{15612163699641478120}{117},7411896491650496]$ $y^2 + (x^3 + x)y = -x^6 + 8x^4 - 32x^2 + 39$
1950.a.97500.1 1950.a \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[3492,996801,1494257697,12480000]$ $[873,-9778,-9141600,-2019056521,97500]$ $[\frac{169024618278531}{32500},-\frac{1084280166171}{16250},-\frac{1786430376}{25}]$ $y^2 + (x^2 + x)y = 5x^5 + 12x^4 + 17x^3 + 12x^2 + 5x$
1950.a.105300.1 1950.a \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[5075172,26967201,45574441613937,13478400]$ $[1268793,67075362902,4727883958948800,374900440872881734199,105300]$ $[\frac{40594654631047811822360650953}{1300},\frac{845707804348247976930324147}{650},72280306487349203974704]$ $y^2 + (x^2 + x)y = x^5 + 36x^4 + 330x^3 + 36x^2 + x$
2080.a.4160.2 2080.a \( 2^{5} \cdot 5 \cdot 13 \) $1$ $\Z/4\Z$ \(\mathsf{CM} \times \Q\) $[49728,2307,38240328,520]$ $[49728,103034878,284642525440,884629355151359,4160]$ $[\frac{4751437160558113062912}{65},\frac{197973593207882440704}{65},169203148053037056]$ $y^2 + xy = x^6 - 12x^4 + 48x^2 - 65$
2156.a.17248.1 2156.a \( 2^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/6\Z$ \(\Q \times \Q\) $[452,24145,4532153,2207744]$ $[113,-474,-28028,-847960,17248]$ $[\frac{18424351793}{17248},-\frac{341966589}{8624},-\frac{165997}{8}]$ $y^2 + (x^2 + x)y = 2x^5 + 5x^4 + 7x^3 + 5x^2 + 2x$
2156.b.34496.1 2156.b \( 2^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/6\Z$ \(\Q \times \Q\) $[2916,41745,37024569,4415488]$ $[729,20404,734800,29836496,34496]$ $[\frac{205891132094649}{34496},\frac{1976231914389}{8624},\frac{2218766175}{196}]$ $y^2 + (x^2 + x)y = 2x^5 - x^4 - 5x^3 + 3x + 1$
2176.a.69632.1 2176.a \( 2^{7} \cdot 17 \) $0$ $\Z/12\Z$ \(\mathsf{CM} \times \Q\) $[7572,68115,166006308,272]$ $[15144,9374224,7623276544,6892706095040,69632]$ $[\frac{194465720403941544}{17},\frac{7948719687495546}{17},25108109106912]$ $y^2 + xy = x^6 - 9x^4 + 24x^2 - 17$
2178.b.176418.1 2178.b \( 2 \cdot 3^{2} \cdot 11^{2} \) $0$ $\Z/6\Z$ \(\Q \times \Q\) $[548,11665,1545177,-22581504]$ $[137,296,2988,80435,-176418]$ $[-\frac{48261724457}{176418},-\frac{380560244}{88209},-\frac{3115654}{9801}]$ $y^2 + (x^2 + x)y = x^5 - x^4 - 3x^3 - x^2 + x$
2250.a.2250.1 2250.a \( 2 \cdot 3^{2} \cdot 5^{3} \) $0$ $\Z/4\Z$ \(\Q \times \Q\) $[260,3745,313425,288000]$ $[65,20,-900,-14725,2250]$ $[\frac{9282325}{18},\frac{21970}{9},-1690]$ $y^2 + (x^2 + x)y = x^5 + 2x^4 + 3x^3 + 2x^2 + x$
2250.a.324000.1 2250.a \( 2 \cdot 3^{2} \cdot 5^{3} \) $0$ $\Z/20\Z$ \(\Q \times \Q\) $[69380,4945,101804825,41472000]$ $[17345,12535170,12078806400,13094102519775,324000]$ $[\frac{12559186449637208725}{2592},\frac{87215139004189255}{432},\frac{33647195635220}{3}]$ $y^2 + (x^2 + x)y = 3x^5 - 13x^3 + 16x^2 + 65x + 40$
2312.b.4624.1 2312.b \( 2^{3} \cdot 17^{2} \) $1$ $\Z/8\Z$ \(\Q \times \Q\) $[264,696,86772,18496]$ $[132,610,-64,-95137,4624]$ $[\frac{2504665152}{289},\frac{87686280}{289},-\frac{69696}{289}]$ $y^2 + (x^3 + x)y = -x^4 - x^2 + 1$
Next   displayed columns for results