Properties

Label 990.a.240570.1
Conductor 990
Discriminant 240570
Sato-Tate group $G_{3,3}$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 3, 28, 72, 28, 3], R![0, 1, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 3, 28, 72, 28, 3]), R([0, 1, 1]))

$y^2 + (x^2 + x)y = 3x^5 + 28x^4 + 72x^3 + 28x^2 + 3x$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
\( N \)  =  \( 990 \)  =  \( 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
magma: Discriminant(C); Factorization(Integers()!$1);
\( \Delta \)  =  \(240570\)  =  \( 2 \cdot 3^{7} \cdot 5 \cdot 11 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];

G2 invariants

magma: G2Invariants(C);

\( I_2 \)  =  \(306056\)  =  \( 2^{3} \cdot 67 \cdot 571 \)
\( I_4 \)  =  \(27393028\)  =  \( 2^{2} \cdot 13 \cdot 263 \cdot 2003 \)
\( I_6 \)  =  \(2746933168904\)  =  \( 2^{3} \cdot 31 \cdot 11076343423 \)
\( I_{10} \)  =  \(985374720\)  =  \( 2^{13} \cdot 3^{7} \cdot 5 \cdot 11 \)
\( J_2 \)  =  \(38257\)  =  \( 67 \cdot 571 \)
\( J_4 \)  =  \(60697908\)  =  \( 2^{2} \cdot 3^{2} \cdot 37 \cdot 45569 \)
\( J_6 \)  =  \(127876480380\)  =  \( 2^{2} \cdot 3^{5} \cdot 5 \cdot 11 \cdot 2392003 \)
\( J_8 \)  =  \(301983618580299\)  =  \( 3^{4} \cdot 19^{2} \cdot 20117 \cdot 513367 \)
\( J_{10} \)  =  \(240570\)  =  \( 2 \cdot 3^{7} \cdot 5 \cdot 11 \)
\( g_1 \)  =  \(81951056110393451083057/240570\)
\( g_2 \)  =  \(188813894774599018858/13365\)
\( g_3 \)  =  \(7001861848004294/9\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
\(\mathrm{Aut}(X)\)\(\simeq\) \(V_4 \) (GAP id : [4,2])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(V_4 \) (GAP id : [4,2])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![0,0,1],C![1,0,0]];

All rational points: (0 : 0 : 1), (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: \(2\)

Invariants of the Jacobian:

Analytic rank: \(0\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);

2-Selmer rank: \(2\)

magma: HasSquareSha(Jacobian(C));

Order of Ш*: square

Tamagawa numbers: 1 (p = 2), 2 (p = 3), 1 (p = 5), 1 (p = 11)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: \(\Z/{2}\Z \times \Z/{2}\Z\)

2-torsion field: \(\Q(\sqrt{10}, \sqrt{33})\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $G_{3,3}$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curves:
  Elliptic curve 15.a2
  Elliptic curve 66.b2

Endomorphisms

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).