Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + 1)y = x^5 - x - 1$ | (homogenize, simplify) |
$y^2 + (x^3 + z^3)y = x^5z - xz^5 - z^6$ | (dehomogenize, simplify) |
$y^2 = x^6 + 4x^5 + 2x^3 - 4x - 3$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(61929\) | \(=\) | \( 3^{2} \cdot 7 \cdot 983 \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(433503\) | \(=\) | \( 3^{2} \cdot 7^{2} \cdot 983 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(52\) | \(=\) | \( 2^{2} \cdot 13 \) |
\( I_4 \) | \(=\) | \(-9503\) | \(=\) | \( - 13 \cdot 17 \cdot 43 \) |
\( I_6 \) | \(=\) | \(10241\) | \(=\) | \( 7^{2} \cdot 11 \cdot 19 \) |
\( I_{10} \) | \(=\) | \(55488384\) | \(=\) | \( 2^{7} \cdot 3^{2} \cdot 7^{2} \cdot 983 \) |
\( J_2 \) | \(=\) | \(13\) | \(=\) | \( 13 \) |
\( J_4 \) | \(=\) | \(403\) | \(=\) | \( 13 \cdot 31 \) |
\( J_6 \) | \(=\) | \(-1567\) | \(=\) | \( -1567 \) |
\( J_8 \) | \(=\) | \(-45695\) | \(=\) | \( - 5 \cdot 13 \cdot 19 \cdot 37 \) |
\( J_{10} \) | \(=\) | \(433503\) | \(=\) | \( 3^{2} \cdot 7^{2} \cdot 983 \) |
\( g_1 \) | \(=\) | \(371293/433503\) | ||
\( g_2 \) | \(=\) | \(885391/433503\) | ||
\( g_3 \) | \(=\) | \(-264823/433503\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1)\)
Number of rational Weierstrass points: \(1\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.190008\) | \(\infty\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.190008\) | \(\infty\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : 0 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - z^3\) | \(0.190008\) | \(\infty\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(1\) |
Mordell-Weil rank: | \(1\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 0.190008 \) |
Real period: | \( 5.050346 \) |
Tamagawa product: | \( 2 \) |
Torsion order: | \( 1 \) |
Leading coefficient: | \( 1.919216 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(3\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1 + T^{2}\) | yes | |
\(7\) | \(1\) | \(2\) | \(2\) | \(1\) | \(( 1 + T )( 1 + 2 T + 7 T^{2} )\) | yes | |
\(983\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + 48 T + 983 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.6.1 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).