Properties

Label 61929.a.433503.1
Conductor $61929$
Discriminant $433503$
Mordell-Weil group \(\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = x^5 - x - 1$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = x^5z - xz^5 - z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 + 2x^3 - 4x - 3$ (homogenize, minimize)

Copy content sage:R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, -1, 0, 0, 0, 1]), R([1, 0, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, -1, 0, 0, 0, 1], R![1, 0, 0, 1]);
 
Copy content sage:X = HyperellipticCurve(R([-3, -4, 0, 2, 0, 4, 1]))
 
Copy content magma:X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(61929\) \(=\) \( 3^{2} \cdot 7 \cdot 983 \)
Copy content magma:Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(433503\) \(=\) \( 3^{2} \cdot 7^{2} \cdot 983 \)
Copy content magma:Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(52\) \(=\)  \( 2^{2} \cdot 13 \)
\( I_4 \)  \(=\) \(-9503\) \(=\)  \( - 13 \cdot 17 \cdot 43 \)
\( I_6 \)  \(=\) \(10241\) \(=\)  \( 7^{2} \cdot 11 \cdot 19 \)
\( I_{10} \)  \(=\) \(55488384\) \(=\)  \( 2^{7} \cdot 3^{2} \cdot 7^{2} \cdot 983 \)
\( J_2 \)  \(=\) \(13\) \(=\)  \( 13 \)
\( J_4 \)  \(=\) \(403\) \(=\)  \( 13 \cdot 31 \)
\( J_6 \)  \(=\) \(-1567\) \(=\)  \( -1567 \)
\( J_8 \)  \(=\) \(-45695\) \(=\)  \( - 5 \cdot 13 \cdot 19 \cdot 37 \)
\( J_{10} \)  \(=\) \(433503\) \(=\)  \( 3^{2} \cdot 7^{2} \cdot 983 \)
\( g_1 \)  \(=\) \(371293/433503\)
\( g_2 \)  \(=\) \(885391/433503\)
\( g_3 \)  \(=\) \(-264823/433503\)

Copy content sage:C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
Copy content magma:IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
Copy content magma:AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
Copy content magma:AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (1 : 0 : 1)\)

Copy content magma:[C![1,-1,0],C![1,-1,1],C![1,0,0]]; // minimal model
 
Copy content magma:[C![1,-1,0],C![1,0,1],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

Copy content magma:#Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

Copy content magma:f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z\)

Copy content magma:MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.190008\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.190008\) \(\infty\)
Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.190008\) \(\infty\)

2-torsion field: 5.1.141552.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.190008 \)
Real period: \( 5.050346 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.919216 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa Root number L-factor Cluster picture Tame reduction?
\(3\) \(2\) \(2\) \(1\) \(1\) \(1 + T^{2}\) yes
\(7\) \(1\) \(2\) \(2\) \(1\) \(( 1 + T )( 1 + 2 T + 7 T^{2} )\) yes
\(983\) \(1\) \(1\) \(1\) \(-1\) \(( 1 - T )( 1 + 48 T + 983 T^{2} )\) yes

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Copy content magma:HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

Copy content magma:HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

Copy content magma:HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);