Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + x + 1)y = x^5 - 8x^4 + 3x^3 + 7x^2 + 2x$ | (homogenize, simplify) |
$y^2 + (x^3 + xz^2 + z^3)y = x^5z - 8x^4z^2 + 3x^3z^3 + 7x^2z^4 + 2xz^5$ | (dehomogenize, simplify) |
$y^2 = x^6 + 4x^5 - 30x^4 + 14x^3 + 29x^2 + 10x + 1$ | (homogenize, minimize) |
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 7, 3, -8, 1]), R([1, 1, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 7, 3, -8, 1], R![1, 1, 0, 1]);
sage: X = HyperellipticCurve(R([1, 10, 29, 14, -30, 4, 1]))
magma: X,pi:= SimplifiedModel(C);
Invariants
Conductor: | \( N \) | \(=\) | \(456247\) | \(=\) | \( 11 \cdot 19 \cdot 37 \cdot 59 \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(-456247\) | \(=\) | \( - 11 \cdot 19 \cdot 37 \cdot 59 \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(8228\) | \(=\) | \( 2^{2} \cdot 11^{2} \cdot 17 \) |
\( I_4 \) | \(=\) | \(33241\) | \(=\) | \( 13 \cdot 2557 \) |
\( I_6 \) | \(=\) | \(94691661\) | \(=\) | \( 3 \cdot 281 \cdot 112327 \) |
\( I_{10} \) | \(=\) | \(-58399616\) | \(=\) | \( - 2^{7} \cdot 11 \cdot 19 \cdot 37 \cdot 59 \) |
\( J_2 \) | \(=\) | \(2057\) | \(=\) | \( 11^{2} \cdot 17 \) |
\( J_4 \) | \(=\) | \(174917\) | \(=\) | \( 174917 \) |
\( J_6 \) | \(=\) | \(19623641\) | \(=\) | \( 73 \cdot 268817 \) |
\( J_8 \) | \(=\) | \(2442468162\) | \(=\) | \( 2 \cdot 3 \cdot 1481 \cdot 274867 \) |
\( J_{10} \) | \(=\) | \(-456247\) | \(=\) | \( - 11 \cdot 19 \cdot 37 \cdot 59 \) |
\( g_1 \) | \(=\) | \(-3347948534700187/41477\) | ||
\( g_2 \) | \(=\) | \(-138401950309271/41477\) | ||
\( g_3 \) | \(=\) | \(-7548410123419/41477\) |
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
Known points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (-2 : -440 : 11),\, (-2 : -641 : 11)\)
magma: [C![-2,-641,11],C![-2,-440,11],C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,0,0]]; // minimal model
magma: [C![-2,-201,11],C![-2,201,11],C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,1,0]]; // simplified model
Number of rational Weierstrass points: \(0\)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z\)
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(2 \cdot(0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2xz^2\) | \(0.675867\) | \(\infty\) |
\((0 : -1 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.541760\) | \(\infty\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(2 \cdot(0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2xz^2\) | \(0.675867\) | \(\infty\) |
\((0 : -1 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.541760\) | \(\infty\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(2 \cdot(0 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + 5xz^2 + z^3\) | \(0.675867\) | \(\infty\) |
\((0 : -1 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + xz^2 - z^3\) | \(0.541760\) | \(\infty\) |
2-torsion field: 6.4.29199808.1
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(2\) |
Mordell-Weil rank: | \(2\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 0.320469 \) |
Real period: | \( 6.344468 \) |
Tamagawa product: | \( 1 \) |
Torsion order: | \( 1 \) |
Leading coefficient: | \( 2.033209 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(11\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 - 6 T + 11 T^{2} )\) | |
\(19\) | \(1\) | \(1\) | \(1\) | \(( 1 - T )( 1 + 19 T^{2} )\) | |
\(37\) | \(1\) | \(1\) | \(1\) | \(( 1 - T )( 1 + 6 T + 37 T^{2} )\) | |
\(59\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 59 T^{2} )\) |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
magma: HeuristicDecompositionFactors(C);
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);