# Properties

 Label 456247.a.456247.1 Conductor $456247$ Discriminant $-456247$ Mordell-Weil group $$\Z \oplus \Z$$ Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\End(J) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands: Magma / SageMath

## Simplified equation

 $y^2 + (x^3 + x + 1)y = x^5 - 8x^4 + 3x^3 + 7x^2 + 2x$ (homogenize, simplify) $y^2 + (x^3 + xz^2 + z^3)y = x^5z - 8x^4z^2 + 3x^3z^3 + 7x^2z^4 + 2xz^5$ (dehomogenize, simplify) $y^2 = x^6 + 4x^5 - 30x^4 + 14x^3 + 29x^2 + 10x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 7, 3, -8, 1]), R([1, 1, 0, 1]));

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 7, 3, -8, 1], R![1, 1, 0, 1]);

sage: X = HyperellipticCurve(R([1, 10, 29, 14, -30, 4, 1]))

magma: X,pi:= SimplifiedModel(C);

## Invariants

 Conductor: $$N$$ $$=$$ $$456247$$ $$=$$ $$11 \cdot 19 \cdot 37 \cdot 59$$ magma: Conductor(LSeries(C)); Factorization($1); Discriminant: $$\Delta$$ $$=$$ $$-456247$$ $$=$$ $$- 11 \cdot 19 \cdot 37 \cdot 59$$ magma: Discriminant(C); Factorization(Integers()!$1);

### G2 invariants

 $$I_2$$ $$=$$ $$8228$$ $$=$$ $$2^{2} \cdot 11^{2} \cdot 17$$ $$I_4$$ $$=$$ $$33241$$ $$=$$ $$13 \cdot 2557$$ $$I_6$$ $$=$$ $$94691661$$ $$=$$ $$3 \cdot 281 \cdot 112327$$ $$I_{10}$$ $$=$$ $$-58399616$$ $$=$$ $$- 2^{7} \cdot 11 \cdot 19 \cdot 37 \cdot 59$$ $$J_2$$ $$=$$ $$2057$$ $$=$$ $$11^{2} \cdot 17$$ $$J_4$$ $$=$$ $$174917$$ $$=$$ $$174917$$ $$J_6$$ $$=$$ $$19623641$$ $$=$$ $$73 \cdot 268817$$ $$J_8$$ $$=$$ $$2442468162$$ $$=$$ $$2 \cdot 3 \cdot 1481 \cdot 274867$$ $$J_{10}$$ $$=$$ $$-456247$$ $$=$$ $$- 11 \cdot 19 \cdot 37 \cdot 59$$ $$g_1$$ $$=$$ $$-3347948534700187/41477$$ $$g_2$$ $$=$$ $$-138401950309271/41477$$ $$g_3$$ $$=$$ $$-7548410123419/41477$$

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);

## Automorphism group

 $$\mathrm{Aut}(X)$$ $$\simeq$$ $C_2$ magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$$C_2$magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);

## Rational points

Known points: $$(1 : 0 : 0),\, (1 : -1 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (-2 : -440 : 11),\, (-2 : -641 : 11)$$
Known points: $$(1 : 0 : 0),\, (1 : -1 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (-2 : -440 : 11),\, (-2 : -641 : 11)$$
Known points: $$(1 : -1 : 0),\, (1 : 1 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (-2 : -201 : 11),\, (-2 : 201 : 11)$$

magma: [C![-2,-641,11],C![-2,-440,11],C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,0,0]]; // minimal model

magma: [C![-2,-201,11],C![-2,201,11],C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,1,0]]; // simplified model

Number of rational Weierstrass points: $$0$$

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

## Mordell-Weil group of the Jacobian

Group structure: $$\Z \oplus \Z$$

magma: MordellWeilGroupGenus2(Jacobian(C));

Generator $D_0$ Height Order
$$2 \cdot(0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)$$ $$x^2$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$2xz^2$$ $$0.675867$$ $$\infty$$
$$(0 : -1 : 1) - (1 : -1 : 0)$$ $$z x$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$-z^3$$ $$0.541760$$ $$\infty$$
Generator $D_0$ Height Order
$$2 \cdot(0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)$$ $$x^2$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$2xz^2$$ $$0.675867$$ $$\infty$$
$$(0 : -1 : 1) - (1 : -1 : 0)$$ $$z x$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$-z^3$$ $$0.541760$$ $$\infty$$
Generator $D_0$ Height Order
$$2 \cdot(0 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)$$ $$x^2$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$x^3 + 5xz^2 + z^3$$ $$0.675867$$ $$\infty$$
$$(0 : -1 : 1) - (1 : -1 : 0)$$ $$z x$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$x^3 + xz^2 - z^3$$ $$0.541760$$ $$\infty$$

## BSD invariants

 Hasse-Weil conjecture: unverified Analytic rank: $$2$$ Mordell-Weil rank: $$2$$ 2-Selmer rank: $$2$$ Regulator: $$0.320469$$ Real period: $$6.344468$$ Tamagawa product: $$1$$ Torsion order: $$1$$ Leading coefficient: $$2.033209$$ Analytic order of Ш: $$1$$   (rounded) Order of Ш: square

## Local invariants

Prime ord($$N$$) ord($$\Delta$$) Tamagawa L-factor Cluster picture
$$11$$ $$1$$ $$1$$ $$1$$ $$( 1 + T )( 1 - 6 T + 11 T^{2} )$$
$$19$$ $$1$$ $$1$$ $$1$$ $$( 1 - T )( 1 + 19 T^{2} )$$
$$37$$ $$1$$ $$1$$ $$1$$ $$( 1 - T )( 1 + 6 T + 37 T^{2} )$$
$$59$$ $$1$$ $$1$$ $$1$$ $$( 1 + T )( 1 + 59 T^{2} )$$

## Galois representations

The mod-$\ell$ Galois representation has maximal image $$\GSp(4,\F_\ell)$$ for all primes $$\ell$$ .

## Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

## Decomposition of the Jacobian

Simple over $$\overline{\Q}$$

magma: HeuristicDecompositionFactors(C);

## Endomorphisms of the Jacobian

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:

 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);