Properties

Label 195029.a.195029.1
Conductor 195029
Discriminant 195029
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-6, -1, 19, 2, -17, 1], R![1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-6, -1, 19, 2, -17, 1]), R([1]))

$y^2 + y = x^5 - 17x^4 + 2x^3 + 19x^2 - x - 6$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
\( N \)  =  \( 195029 \)  =  \( 195029 \)
magma: Discriminant(C); Factorization(Integers()!$1);
\( \Delta \)  =  \(195029\)  =  \( 195029 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];

G2 invariants

magma: G2Invariants(C);

\( I_2 \)  =  \(82432\)  =  \( 2^{9} \cdot 7 \cdot 23 \)
\( I_4 \)  =  \(436397824\)  =  \( 2^{8} \cdot 1704679 \)
\( I_6 \)  =  \(8949998309376\)  =  \( 2^{12} \cdot 3 \cdot 97 \cdot 7508791 \)
\( I_{10} \)  =  \(798838784\)  =  \( 2^{12} \cdot 195029 \)
\( J_2 \)  =  \(10304\)  =  \( 2^{6} \cdot 7 \cdot 23 \)
\( J_4 \)  =  \(-121960\)  =  \( -1 \cdot 2^{3} \cdot 5 \cdot 3049 \)
\( J_6 \)  =  \(5337536\)  =  \( 2^{6} \cdot 83399 \)
\( J_8 \)  =  \(10030932336\)  =  \( 2^{4} \cdot 3 \cdot 67 \cdot 73 \cdot 42727 \)
\( J_{10} \)  =  \(195029\)  =  \( 195029 \)
\( g_1 \)  =  \(116152684096230785024/195029\)
\( g_2 \)  =  \(-133424310061629440/195029\)
\( g_3 \)  =  \(566699092606976/195029\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![1,0,0]];

All rational points: (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: \(1\)

Invariants of the Jacobian:

Analytic rank: \(0\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);

2-Selmer rank: \(0\)

magma: HasSquareSha(Jacobian(C));

Order of Ш*: square

Tamagawa numbers: 1 (p = 195029)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: \(\mathrm{trivial}\)

2-torsion field: 5.1.3120464.2

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All endomorphisms of the Jacobian are defined over \(\Q\)