Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + x)y = 2x^3 - 2x^2 + 3x$ | (homogenize, simplify) |
$y^2 + (x^3 + xz^2)y = 2x^3z^3 - 2x^2z^4 + 3xz^5$ | (dehomogenize, simplify) |
$y^2 = x^6 + 2x^4 + 8x^3 - 7x^2 + 12x$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(16245\) | \(=\) | \( 3^{2} \cdot 5 \cdot 19^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(925965\) | \(=\) | \( 3^{3} \cdot 5 \cdot 19^{3} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(152\) | \(=\) | \( 2^{3} \cdot 19 \) |
\( I_4 \) | \(=\) | \(11692\) | \(=\) | \( 2^{2} \cdot 37 \cdot 79 \) |
\( I_6 \) | \(=\) | \(680631\) | \(=\) | \( 3 \cdot 7 \cdot 32411 \) |
\( I_{10} \) | \(=\) | \(3703860\) | \(=\) | \( 2^{2} \cdot 3^{3} \cdot 5 \cdot 19^{3} \) |
\( J_2 \) | \(=\) | \(76\) | \(=\) | \( 2^{2} \cdot 19 \) |
\( J_4 \) | \(=\) | \(-1708\) | \(=\) | \( - 2^{2} \cdot 7 \cdot 61 \) |
\( J_6 \) | \(=\) | \(-33471\) | \(=\) | \( - 3^{2} \cdot 3719 \) |
\( J_8 \) | \(=\) | \(-1365265\) | \(=\) | \( - 5 \cdot 11 \cdot 103 \cdot 241 \) |
\( J_{10} \) | \(=\) | \(925965\) | \(=\) | \( 3^{3} \cdot 5 \cdot 19^{3} \) |
\( g_1 \) | \(=\) | \(369664/135\) | ||
\( g_2 \) | \(=\) | \(-109312/135\) | ||
\( g_3 \) | \(=\) | \(-59504/285\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
Known points | |||||
---|---|---|---|---|---|
\((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((1 : 1 : 1)\) | \((1 : -3 : 1)\) | \((-3 : 3 : 1)\) |
\((3 : 9 : 2)\) | \((-3 : 27 : 1)\) | \((3 : -48 : 2)\) |
Known points | |||||
---|---|---|---|---|---|
\((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((1 : 1 : 1)\) | \((1 : -3 : 1)\) | \((-3 : 3 : 1)\) |
\((3 : 9 : 2)\) | \((-3 : 27 : 1)\) | \((3 : -48 : 2)\) |
Known points | |||||
---|---|---|---|---|---|
\((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : 0 : 1)\) | \((1 : -4 : 1)\) | \((1 : 4 : 1)\) | \((-3 : -24 : 1)\) |
\((-3 : 24 : 1)\) | \((3 : -57 : 2)\) | \((3 : 57 : 2)\) |
Number of rational Weierstrass points: \(1\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z \oplus \Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - xz + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2\) | \(0.712986\) | \(\infty\) |
\((0 : 0 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0.112723\) | \(\infty\) |
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - xz + 4z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 + 2z^3\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - xz + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2\) | \(0.712986\) | \(\infty\) |
\((0 : 0 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0.112723\) | \(\infty\) |
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - xz + 4z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 + 2z^3\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2 - xz + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + 3xz^2\) | \(0.712986\) | \(\infty\) |
\((0 : 0 : 1) - (1 : -1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + xz^2\) | \(0.112723\) | \(\infty\) |
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2 - xz + 4z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + 3xz^2 + 4z^3\) | \(0\) | \(2\) |
2-torsion field: 6.0.19494000.1
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(2\) |
Mordell-Weil rank: | \(2\) |
2-Selmer rank: | \(3\) |
Regulator: | \( 0.078958 \) |
Real period: | \( 8.544377 \) |
Tamagawa product: | \( 4 \) |
Torsion order: | \( 2 \) |
Leading coefficient: | \( 0.674652 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(3\) | \(2\) | \(3\) | \(2\) | \(1\) | \(( 1 + T )^{2}\) | yes | |
\(5\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 3 T + 5 T^{2} )\) | yes | |
\(19\) | \(2\) | \(3\) | \(2\) | \(1\) | \(( 1 + T )^{2}\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.60.1 | yes |
\(3\) | 3.80.4 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 57.a
Elliptic curve isogeny class 285.b
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(3\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).