Minimal equation
Minimal equation
Simplified equation
| $y^2 = -2x^6 - 15x^4 - 37x^2 - 30$ | (homogenize, simplify) |
| $y^2 = -2x^6 - 15x^4z^2 - 37x^2z^4 - 30z^6$ | (dehomogenize, simplify) |
| $y^2 = -2x^6 - 15x^4 - 37x^2 - 30$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(15360\) | \(=\) | \( 2^{10} \cdot 3 \cdot 5 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(-983040\) | \(=\) | \( - 2^{16} \cdot 3 \cdot 5 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(11640\) | \(=\) | \( 2^{3} \cdot 3 \cdot 5 \cdot 97 \) |
| \( I_4 \) | \(=\) | \(897\) | \(=\) | \( 3 \cdot 13 \cdot 23 \) |
| \( I_6 \) | \(=\) | \(3480045\) | \(=\) | \( 3 \cdot 5 \cdot 232003 \) |
| \( I_{10} \) | \(=\) | \(120\) | \(=\) | \( 2^{3} \cdot 3 \cdot 5 \) |
| \( J_2 \) | \(=\) | \(46560\) | \(=\) | \( 2^{5} \cdot 3 \cdot 5 \cdot 97 \) |
| \( J_4 \) | \(=\) | \(90316832\) | \(=\) | \( 2^{5} \cdot 113 \cdot 24977 \) |
| \( J_6 \) | \(=\) | \(233570058240\) | \(=\) | \( 2^{14} \cdot 3 \cdot 5 \cdot 19 \cdot 50021 \) |
| \( J_8 \) | \(=\) | \(679472942284544\) | \(=\) | \( 2^{8} \cdot 53 \cdot 20921 \cdot 2393723 \) |
| \( J_{10} \) | \(=\) | \(983040\) | \(=\) | \( 2^{16} \cdot 3 \cdot 5 \) |
| \( g_1 \) | \(=\) | \(222583859461440000\) | ||
| \( g_2 \) | \(=\) | \(9273345076342800\) | ||
| \( g_3 \) | \(=\) | \(515076721401600\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2^2$ |
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable except over $\R$.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - D_\infty\) | \(2x^2 + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2\) | \(2.071439\) | \(\infty\) |
| \(D_0 - D_\infty\) | \(2x^2 + 5z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
| \(D_0 - D_\infty\) | \(x^2 + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - D_\infty\) | \(2x^2 + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2\) | \(2.071439\) | \(\infty\) |
| \(D_0 - D_\infty\) | \(2x^2 + 5z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
| \(D_0 - D_\infty\) | \(x^2 + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - D_\infty\) | \(2x^2 + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(1/2xz^2\) | \(2.071439\) | \(\infty\) |
| \(D_0 - D_\infty\) | \(2x^2 + 5z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
| \(D_0 - D_\infty\) | \(x^2 + 3z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
2-torsion field: 8.0.207360000.2
BSD invariants
| Hasse-Weil conjecture: | verified |
| Analytic rank: | \(1\) |
| Mordell-Weil rank: | \(1\) |
| 2-Selmer rank: | \(4\) |
| Regulator: | \( 2.071439 \) |
| Real period: | \( 4.168708 \) |
| Tamagawa product: | \( 1 \) |
| Torsion order: | \( 4 \) |
| Leading coefficient: | \( 1.079403 \) |
| Analytic order of Ш: | \( 2 \) (rounded) |
| Order of Ш: | twice a square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(10\) | \(16\) | \(1\) | \(-1^*\) | \(1\) | no | |
| \(3\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 3 T^{2} )\) | yes | |
| \(5\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 2 T + 5 T^{2} )\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.90.6 | yes |
| \(3\) | 3.270.2 | no |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $N(\mathrm{U}(1)\times\mathrm{SU}(2))$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{U}(1)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 480.b
Elliptic curve isogeny class 32.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{-1}) \) with defining polynomial \(x^{2} + 1\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
| \(\End (J_{\overline{\Q}})\) | \(\simeq\) | an order of index \(4\) in \(\Z \times \Z [\sqrt{-1}]\) |
| \(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q(\sqrt{-1}) \) |
| \(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\R \times \C\) |