Properties

Label 1269.b.102789.1
Conductor 1269
Discriminant -102789
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-103, -16, -80, -8, -21, -1, -2], R![0, 1, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-103, -16, -80, -8, -21, -1, -2]), R([0, 1, 0, 1]))

$y^2 + (x^3 + x)y = -2x^6 - x^5 - 21x^4 - 8x^3 - 80x^2 - 16x - 103$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
\( N \)  =  \( 1269 \)  =  \( 3^{3} \cdot 47 \)
magma: Discriminant(C); Factorization(Integers()!$1);
\( \Delta \)  =  \(-102789\)  =  \( -1 \cdot 3^{7} \cdot 47 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];

G2 invariants

magma: G2Invariants(C);

\( I_2 \)  =  \(-1094304\)  =  \( -1 \cdot 2^{5} \cdot 3 \cdot 11399 \)
\( I_4 \)  =  \(2865600\)  =  \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 199 \)
\( I_6 \)  =  \(-1043681025600\)  =  \( -1 \cdot 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 24159283 \)
\( I_{10} \)  =  \(-421023744\)  =  \( -1 \cdot 2^{12} \cdot 3^{7} \cdot 47 \)
\( J_2 \)  =  \(-136788\)  =  \( -1 \cdot 2^{2} \cdot 3 \cdot 11399 \)
\( J_4 \)  =  \(779593356\)  =  \( 2^{2} \cdot 3^{3} \cdot 7218457 \)
\( J_6 \)  =  \(-5923938871071\)  =  \( -1 \cdot 3^{4} \cdot 13 \cdot 52567 \cdot 107021 \)
\( J_8 \)  =  \(50639487394179303\)  =  \( 3^{5} \cdot 163 \cdot 149561 \cdot 8548247 \)
\( J_{10} \)  =  \(-102789\)  =  \( -1 \cdot 3^{7} \cdot 47 \)
\( g_1 \)  =  \(197075993647247827966976/423\)
\( g_2 \)  =  \(2737061778548953841408/141\)
\( g_3 \)  =  \(152047414479420367856/141\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable except over $\R$.

magma: [];

There are no rational points.

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: \(0\)

Invariants of the Jacobian:

Analytic rank: \(0\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);

2-Selmer rank: \(2\)

magma: HasSquareSha(Jacobian(C));

Order of Ш*: twice a square

Tamagawa numbers: 5 (p = 3), 1 (p = 47)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: \(\Z/{10}\Z\)

2-torsion field: 6.4.45805824.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).