Properties

Label 1184.a.606208.1
Conductor $1184$
Discriminant $606208$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{8}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 = 2x^5 + x^4 - 8x^3 - 8x^2 - 2x$ (homogenize, simplify)
$y^2 = 2x^5z + x^4z^2 - 8x^3z^3 - 8x^2z^4 - 2xz^5$ (dehomogenize, simplify)
$y^2 = 2x^5 + x^4 - 8x^3 - 8x^2 - 2x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -2, -8, -8, 1, 2]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -2, -8, -8, 1, 2], R![]);
 
sage: X = HyperellipticCurve(R([0, -2, -8, -8, 1, 2]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1184\) \(=\) \( 2^{5} \cdot 37 \)
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(1184,2),R![1]>*])); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(606208\) \(=\) \( 2^{14} \cdot 37 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(176\) \(=\)  \( 2^{4} \cdot 11 \)
\( I_4 \)  \(=\) \(496\) \(=\)  \( 2^{4} \cdot 31 \)
\( I_6 \)  \(=\) \(29918\) \(=\)  \( 2 \cdot 7 \cdot 2137 \)
\( I_{10} \)  \(=\) \(74\) \(=\)  \( 2 \cdot 37 \)
\( J_2 \)  \(=\) \(704\) \(=\)  \( 2^{6} \cdot 11 \)
\( J_4 \)  \(=\) \(15360\) \(=\)  \( 2^{10} \cdot 3 \cdot 5 \)
\( J_6 \)  \(=\) \(140288\) \(=\)  \( 2^{10} \cdot 137 \)
\( J_8 \)  \(=\) \(-34291712\) \(=\)  \( - 2^{14} \cdot 7 \cdot 13 \cdot 23 \)
\( J_{10} \)  \(=\) \(606208\) \(=\)  \( 2^{14} \cdot 37 \)
\( g_1 \)  \(=\) \(10554638336/37\)
\( g_2 \)  \(=\) \(327106560/37\)
\( g_3 \)  \(=\) \(4243712/37\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : -1 : 1),\, (-1 : 1 : 1),\, (-1 : 0 : 2)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : -1 : 1),\, (-1 : 1 : 1),\, (-1 : 0 : 2)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (-1 : -1/2 : 1),\, (-1 : 1/2 : 1),\, (-1 : 0 : 2)\)

magma: [C![-1,-1,1],C![-1,0,2],C![-1,1,1],C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![-1,-1/2,1],C![-1,0,2],C![-1,1/2,1],C![0,0,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{8}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 0 : 2) - (1 : 0 : 0)\) \(2x + z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - 3xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(7xz^2 + 4z^3\) \(0\) \(8\)
Generator $D_0$ Height Order
\((-1 : 0 : 2) - (1 : 0 : 0)\) \(2x + z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - 3xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(7xz^2 + 4z^3\) \(0\) \(8\)
Generator $D_0$ Height Order
\((-1 : 0 : 2) - (1 : 0 : 0)\) \(2x + z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - 3xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(7/2xz^2 + 2z^3\) \(0\) \(8\)

2-torsion field: 3.3.148.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 14.23204 \)
Tamagawa product: \( 8 \)
Torsion order:\( 16 \)
Leading coefficient: \( 0.444751 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(5\) \(14\) \(8\) \(1\)
\(37\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 6 T + 37 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.120.3 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);