# Properties

 Label 1145.a.1145.1 Conductor 1145 Discriminant 1145 Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands for: Magma / SageMath

## Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, 3, -3], R![1, 0, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, 3, -3]), R([1, 0, 0, 1]))

$y^2 + (x^3 + 1)y = -3x^4 + 3x^3 - x$

## Invariants

 magma: Conductor(LSeries(C)); Factorization($1); $$N$$ = $$1145$$ = $$5 \cdot 229$$ magma: Discriminant(C); Factorization(Integers()!$1); $$\Delta$$ = $$1145$$ = $$5 \cdot 229$$

### G2 invariants

magma: G2Invariants(C);

 $$I_2$$ = $$936$$ = $$2^{3} \cdot 3^{2} \cdot 13$$ $$I_4$$ = $$21348$$ = $$2^{2} \cdot 3^{2} \cdot 593$$ $$I_6$$ = $$6169320$$ = $$2^{3} \cdot 3^{2} \cdot 5 \cdot 17137$$ $$I_{10}$$ = $$4689920$$ = $$2^{12} \cdot 5 \cdot 229$$ $$J_2$$ = $$117$$ = $$3^{2} \cdot 13$$ $$J_4$$ = $$348$$ = $$2^{2} \cdot 3 \cdot 29$$ $$J_6$$ = $$224$$ = $$2^{5} \cdot 7$$ $$J_8$$ = $$-23724$$ = $$-1 \cdot 2^{2} \cdot 3^{2} \cdot 659$$ $$J_{10}$$ = $$1145$$ = $$5 \cdot 229$$ $$g_1$$ = $$21924480357/1145$$ $$g_2$$ = $$557361324/1145$$ $$g_3$$ = $$3066336/1145$$
Alternative geometric invariants: G2

## Automorphism group

 magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X)$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1]) magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1])

## Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![0,-1,1],C![0,0,1],C![1,-5,2],C![1,-4,2],C![1,-1,0],C![1,-1,1],C![1,0,0]];

All rational points: (0 : -1 : 1), (0 : 0 : 1), (1 : -5 : 2), (1 : -4 : 2), (1 : -1 : 0), (1 : -1 : 1), (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: $$1$$

## Invariants of the Jacobian:

Analytic rank: $$1$$

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1); 2-Selmer rank: $$2$$ magma: HasSquareSha(Jacobian(C)); Order of Ш*: square Tamagawa numbers: 1 (p = 5), 1 (p = 229) magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: $$\Z/{2}\Z$$

### Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

### Decomposition

Simple over $$\overline{\Q}$$

### Endomorphisms

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:
 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.