Properties

Label 1136.a.9088.1
Conductor 1136
Discriminant -9088
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, -1, 2, -1, 1], R![0, 1, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, -1, 2, -1, 1]), R([0, 1, 0, 1]))

$y^2 + (x^3 + x)y = x^4 - x^3 + 2x^2 - x + 1$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
\( N \)  =  \( 1136 \)  =  \( 2^{4} \cdot 71 \)
magma: Discriminant(C); Factorization(Integers()!$1);
\( \Delta \)  =  \(-9088\)  =  \( -1 \cdot 2^{7} \cdot 71 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];

G2 invariants

magma: G2Invariants(C);

\( I_2 \)  =  \(-1728\)  =  \( -1 \cdot 2^{6} \cdot 3^{3} \)
\( I_4 \)  =  \(21888\)  =  \( 2^{7} \cdot 3^{2} \cdot 19 \)
\( I_6 \)  =  \(-11181312\)  =  \( -1 \cdot 2^{8} \cdot 3^{2} \cdot 23 \cdot 211 \)
\( I_{10} \)  =  \(-37224448\)  =  \( -1 \cdot 2^{19} \cdot 71 \)
\( J_2 \)  =  \(-216\)  =  \( -1 \cdot 2^{3} \cdot 3^{3} \)
\( J_4 \)  =  \(1716\)  =  \( 2^{2} \cdot 3 \cdot 11 \cdot 13 \)
\( J_6 \)  =  \(-17596\)  =  \( -1 \cdot 2^{2} \cdot 53 \cdot 83 \)
\( J_8 \)  =  \(214020\)  =  \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \cdot 41 \)
\( J_{10} \)  =  \(-9088\)  =  \( -1 \cdot 2^{7} \cdot 71 \)
\( g_1 \)  =  \(3673320192/71\)
\( g_2 \)  =  \(135104112/71\)
\( g_3 \)  =  \(6413742/71\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,0,0]];

All rational points: (0 : -1 : 1), (0 : 1 : 1), (1 : -1 : 0), (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: \(0\)

Invariants of the Jacobian:

Analytic rank: \(0\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);

2-Selmer rank: \(1\)

magma: HasSquareSha(Jacobian(C));

Order of Ш*: square

Tamagawa numbers: 7 (p = 2), 1 (p = 71)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: \(\Z/{14}\Z\)

2-torsion field: 6.4.1290496.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).