Properties

Label 1136.a.290816.1
Conductor 1136
Discriminant 290816
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-24, 40, 25, -9, -5], R![0, 0, 1, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-24, 40, 25, -9, -5]), R([0, 0, 1, 1]))

$y^2 + (x^3 + x^2)y = -5x^4 - 9x^3 + 25x^2 + 40x - 24$

Invariants

magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(1136,2),R![1, -1]>*])); Factorization($1);
\( N \)  =  \( 1136 \)  =  \( 2^{4} \cdot 71 \)
magma: Discriminant(C); Factorization(Integers()!$1);
\( \Delta \)  =  \(290816\)  =  \( 2^{12} \cdot 71 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];

G2 invariants

magma: G2Invariants(C);

\( I_2 \)  =  \(74016\)  =  \( 2^{5} \cdot 3^{2} \cdot 257 \)
\( I_4 \)  =  \(1101888\)  =  \( 2^{6} \cdot 3^{2} \cdot 1913 \)
\( I_6 \)  =  \(27096003072\)  =  \( 2^{9} \cdot 3^{2} \cdot 5880209 \)
\( I_{10} \)  =  \(1191182336\)  =  \( 2^{24} \cdot 71 \)
\( J_2 \)  =  \(9252\)  =  \( 2^{2} \cdot 3^{2} \cdot 257 \)
\( J_4 \)  =  \(3555168\)  =  \( 2^{5} \cdot 3 \cdot 29 \cdot 1277 \)
\( J_6 \)  =  \(1815712832\)  =  \( 2^{6} \cdot 577 \cdot 49169 \)
\( J_8 \)  =  \(1039938903360\)  =  \( 2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 17194757 \)
\( J_{10} \)  =  \(290816\)  =  \( 2^{12} \cdot 71 \)
\( g_1 \)  =  \(66203075280122793/284\)
\( g_2 \)  =  \(1374792164318403/142\)
\( g_3 \)  =  \(151781365064097/284\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![-3,9,1],C![1,-1,0],C![1,0,0]];

All rational points: (-3 : 9 : 1), (1 : -1 : 0), (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: \(1\)

Invariants of the Jacobian:

Analytic rank: \(0\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);

2-Selmer rank: \(1\)

magma: HasSquareSha(Jacobian(C));

Order of Ш*: square

Tamagawa numbers: 7 (p = 2), 1 (p = 71)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: \(\Z/{14}\Z\)

2-torsion field: 6.6.10323968.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).