# Properties

 Label 1136.a.290816.1 Conductor 1136 Discriminant 290816 Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands for: Magma / SageMath

## Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-24, 40, 25, -9, -5], R![0, 0, 1, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-24, 40, 25, -9, -5]), R([0, 0, 1, 1]))

$y^2 + (x^3 + x^2)y = -5x^4 - 9x^3 + 25x^2 + 40x - 24$

## Invariants

 magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(1136,2),R![1, -1]>*])); Factorization($1); $$N$$ = $$1136$$ = $$2^{4} \cdot 71$$ magma: Discriminant(C); Factorization(Integers()!$1); $$\Delta$$ = $$290816$$ = $$2^{12} \cdot 71$$

### G2 invariants

magma: G2Invariants(C);

 $$I_2$$ = $$74016$$ = $$2^{5} \cdot 3^{2} \cdot 257$$ $$I_4$$ = $$1101888$$ = $$2^{6} \cdot 3^{2} \cdot 1913$$ $$I_6$$ = $$27096003072$$ = $$2^{9} \cdot 3^{2} \cdot 5880209$$ $$I_{10}$$ = $$1191182336$$ = $$2^{24} \cdot 71$$ $$J_2$$ = $$9252$$ = $$2^{2} \cdot 3^{2} \cdot 257$$ $$J_4$$ = $$3555168$$ = $$2^{5} \cdot 3 \cdot 29 \cdot 1277$$ $$J_6$$ = $$1815712832$$ = $$2^{6} \cdot 577 \cdot 49169$$ $$J_8$$ = $$1039938903360$$ = $$2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 17194757$$ $$J_{10}$$ = $$290816$$ = $$2^{12} \cdot 71$$ $$g_1$$ = $$66203075280122793/284$$ $$g_2$$ = $$1374792164318403/142$$ $$g_3$$ = $$151781365064097/284$$
Alternative geometric invariants: G2

## Automorphism group

 magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X)$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1]) magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1])

## Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![-3,9,1],C![1,-1,0],C![1,0,0]];

All rational points: (-3 : 9 : 1), (1 : -1 : 0), (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: $$1$$

## Invariants of the Jacobian:

Analytic rank: $$0$$

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1); 2-Selmer rank: $$1$$ magma: HasSquareSha(Jacobian(C)); Order of Ш*: square Tamagawa numbers: 7 (p = 2), 1 (p = 71) magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: $$\Z/{14}\Z$$

### Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

### Decomposition

Simple over $$\overline{\Q}$$

### Endomorphisms

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:
 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.