Properties

Label 100352.c.100352.1
Conductor 100352
Discriminant 100352
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-14, 14, 7, -9, 0, 1], R![]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-14, 14, 7, -9, 0, 1]), R([]))

$y^2 = x^5 - 9x^3 + 7x^2 + 14x - 14$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
\( N \)  =  \( 100352 \)  =  \( 2^{11} \cdot 7^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
\( \Delta \)  =  \(100352\)  =  \( 2^{11} \cdot 7^{2} \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];

G2 invariants

magma: G2Invariants(C);

\( I_2 \)  =  \(16736\)  =  \( 2^{5} \cdot 523 \)
\( I_4 \)  =  \(265216\)  =  \( 2^{10} \cdot 7 \cdot 37 \)
\( I_6 \)  =  \(1458946048\)  =  \( 2^{14} \cdot 7 \cdot 12721 \)
\( I_{10} \)  =  \(411041792\)  =  \( 2^{23} \cdot 7^{2} \)
\( J_2 \)  =  \(2092\)  =  \( 2^{2} \cdot 523 \)
\( J_4 \)  =  \(179590\)  =  \( 2 \cdot 5 \cdot 17959 \)
\( J_6 \)  =  \(20265956\)  =  \( 2^{2} \cdot 71 \cdot 71359 \)
\( J_8 \)  =  \(2535952963\)  =  \( 2535952963 \)
\( J_{10} \)  =  \(100352\)  =  \( 2^{11} \cdot 7^{2} \)
\( g_1 \)  =  \(39129873538843/98\)
\( g_2 \)  =  \(12845683618265/784\)
\( g_3 \)  =  \(1385831669681/1568\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![1,0,0],C![9,-182,4],C![9,182,4]];

All rational points: (1 : 0 : 0), (9 : -182 : 4), (9 : 182 : 4)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: \(1\)

Invariants of the Jacobian:

Analytic rank: \(1\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);

2-Selmer rank: \(2\)

magma: HasSquareSha(Jacobian(C));

Order of Ш*: square

Tamagawa numbers: 1 (p = 2), 1 (p = 7)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: \(\Z/{2}\Z\)

2-torsion field: 6.6.1229312.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).