Properties

Label 100341.a.100341.1
Conductor $100341$
Discriminant $100341$
Mordell-Weil group \(\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^5 - x^4 - 4x^3 - 5x^2 - 3x - 1$ (homogenize, simplify)
$y^2 + z^3y = x^5z - x^4z^2 - 4x^3z^3 - 5x^2z^4 - 3xz^5 - z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 - 4x^4 - 16x^3 - 20x^2 - 12x - 3$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, -3, -5, -4, -1, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, -3, -5, -4, -1, 1], R![1]);
 
sage: X = HyperellipticCurve(R([-3, -12, -20, -16, -4, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(100341\) \(=\) \( 3^{2} \cdot 11149 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(100341\) \(=\) \( 3^{2} \cdot 11149 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(416\) \(=\)  \( 2^{5} \cdot 13 \)
\( I_4 \)  \(=\) \(5584\) \(=\)  \( 2^{4} \cdot 349 \)
\( I_6 \)  \(=\) \(670128\) \(=\)  \( 2^{4} \cdot 3 \cdot 23 \cdot 607 \)
\( I_{10} \)  \(=\) \(-401364\) \(=\)  \( - 2^{2} \cdot 3^{2} \cdot 11149 \)
\( J_2 \)  \(=\) \(208\) \(=\)  \( 2^{4} \cdot 13 \)
\( J_4 \)  \(=\) \(872\) \(=\)  \( 2^{3} \cdot 109 \)
\( J_6 \)  \(=\) \(144\) \(=\)  \( 2^{4} \cdot 3^{2} \)
\( J_8 \)  \(=\) \(-182608\) \(=\)  \( - 2^{4} \cdot 101 \cdot 113 \)
\( J_{10} \)  \(=\) \(-100341\) \(=\)  \( - 3^{2} \cdot 11149 \)
\( g_1 \)  \(=\) \(-389328928768/100341\)
\( g_2 \)  \(=\) \(-7847051264/100341\)
\( g_3 \)  \(=\) \(-692224/11149\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0)\)
All points: \((1 : 0 : 0)\)
All points: \((1 : 0 : 0)\)

magma: [C![1,0,0]]; // minimal model
 
magma: [C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0.949761\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0.949761\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 + z^3\) \(0.949761\) \(\infty\)

2-torsion field: 5.1.1605456.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.949761 \)
Real period: \( 4.057159 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 3.853332 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(2\) \(2\) \(1\) \(( 1 - T )( 1 + T )\)
\(11149\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 17 T + 11149 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);