Properties

Label 100315.a.501575.1
Conductor 100315
Discriminant -501575
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, -5, 2, 1, 3, 2], R![1, 1, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, -5, 2, 1, 3, 2]), R([1, 1, 0, 1]))

$y^2 + (x^3 + x + 1)y = 2x^5 + 3x^4 + x^3 + 2x^2 - 5x + 1$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
\( N \)  =  \( 100315 \)  =  \( 5 \cdot 20063 \)
magma: Discriminant(C); Factorization(Integers()!$1);
\( \Delta \)  =  \(-501575\)  =  \( -1 \cdot 5^{2} \cdot 20063 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];

G2 invariants

magma: G2Invariants(C);

\( I_2 \)  =  \(-8760\)  =  \( -1 \cdot 2^{3} \cdot 3 \cdot 5 \cdot 73 \)
\( I_4 \)  =  \(1011396\)  =  \( 2^{2} \cdot 3 \cdot 89 \cdot 947 \)
\( I_6 \)  =  \(-3791244216\)  =  \( -1 \cdot 2^{3} \cdot 3 \cdot 157968509 \)
\( I_{10} \)  =  \(-2054451200\)  =  \( -1 \cdot 2^{12} \cdot 5^{2} \cdot 20063 \)
\( J_2 \)  =  \(-1095\)  =  \( -1 \cdot 3 \cdot 5 \cdot 73 \)
\( J_4 \)  =  \(39424\)  =  \( 2^{9} \cdot 7 \cdot 11 \)
\( J_6 \)  =  \(338316\)  =  \( 2^{2} \cdot 3 \cdot 11^{2} \cdot 233 \)
\( J_8 \)  =  \(-481176949\)  =  \( -1 \cdot 11^{2} \cdot 3976669 \)
\( J_{10} \)  =  \(-501575\)  =  \( -1 \cdot 5^{2} \cdot 20063 \)
\( g_1 \)  =  \(62969549637375/20063\)
\( g_2 \)  =  \(2070441838080/20063\)
\( g_3 \)  =  \(-16225973676/20063\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![1,-8,2],C![1,-5,2],C![1,-4,1],C![1,-1,0],C![1,0,0],C![1,1,1]];

Known rational points: (1 : -8 : 2), (1 : -5 : 2), (1 : -4 : 1), (1 : -1 : 0), (1 : 0 : 0), (1 : 1 : 1)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: \(0\)

Invariants of the Jacobian:

Analytic rank*: \(2\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);

2-Selmer rank: \(2\)

magma: HasSquareSha(Jacobian(C));

Order of Ш*: square

Tamagawa numbers: 2 (p = 5), 1 (p = 20063)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: \(\mathrm{trivial}\)

2-torsion field: 6.4.1284032.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).