Properties

Label 100121.b.700847.1
Conductor 100121
Discriminant 700847
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![4, 6, 3, 0, -1], R![1, 1, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([4, 6, 3, 0, -1]), R([1, 1, 0, 1]))

$y^2 + (x^3 + x + 1)y = -x^4 + 3x^2 + 6x + 4$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
\( N \)  =  \( 100121 \)  =  \( 7 \cdot 14303 \)
magma: Discriminant(C); Factorization(Integers()!$1);
\( \Delta \)  =  \(700847\)  =  \( 7^{2} \cdot 14303 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];

G2 invariants

magma: G2Invariants(C);

\( I_2 \)  =  \(-3640\)  =  \( -1 \cdot 2^{3} \cdot 5 \cdot 7 \cdot 13 \)
\( I_4 \)  =  \(284836\)  =  \( 2^{2} \cdot 71209 \)
\( I_6 \)  =  \(-342400472\)  =  \( -1 \cdot 2^{3} \cdot 42800059 \)
\( I_{10} \)  =  \(2870669312\)  =  \( 2^{12} \cdot 7^{2} \cdot 14303 \)
\( J_2 \)  =  \(-455\)  =  \( -1 \cdot 5 \cdot 7 \cdot 13 \)
\( J_4 \)  =  \(5659\)  =  \( 5659 \)
\( J_6 \)  =  \(1397\)  =  \( 11 \cdot 127 \)
\( J_8 \)  =  \(-8164979\)  =  \( -1 \cdot 29 \cdot 281551 \)
\( J_{10} \)  =  \(700847\)  =  \( 7^{2} \cdot 14303 \)
\( g_1 \)  =  \(-397979684375/14303\)
\( g_2 \)  =  \(-10878720125/14303\)
\( g_3 \)  =  \(5902325/14303\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![-4,36,3],C![-4,37,3],C![-1,-12,2],C![-1,0,1],C![-1,1,1],C![-1,9,2],C![1,-1,0],C![1,0,0],C![2,-12,1],C![2,1,1]];

Known rational points: (-4 : 36 : 3), (-4 : 37 : 3), (-1 : -12 : 2), (-1 : 0 : 1), (-1 : 1 : 1), (-1 : 9 : 2), (1 : -1 : 0), (1 : 0 : 0), (2 : -12 : 1), (2 : 1 : 1)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: \(0\)

Invariants of the Jacobian:

Analytic rank*: \(2\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);

2-Selmer rank: \(2\)

magma: HasSquareSha(Jacobian(C));

Order of Ш*: square

Tamagawa numbers: 2 (p = 7), 1 (p = 14303)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: \(\mathrm{trivial}\)

2-torsion field: 6.2.915392.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).