Properties

Label 100096.a.100096.1
Conductor 100096
Discriminant -100096
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-2, -7, -7, -3, -2, 1], R![]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-2, -7, -7, -3, -2, 1]), R([]))

$y^2 = x^5 - 2x^4 - 3x^3 - 7x^2 - 7x - 2$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
\( N \)  =  \( 100096 \)  =  \( 2^{8} \cdot 17 \cdot 23 \)
magma: Discriminant(C); Factorization(Integers()!$1);
\( \Delta \)  =  \(-100096\)  =  \( -1 \cdot 2^{8} \cdot 17 \cdot 23 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];

G2 invariants

magma: G2Invariants(C);

\( I_2 \)  =  \(-7200\)  =  \( -1 \cdot 2^{5} \cdot 3^{2} \cdot 5^{2} \)
\( I_4 \)  =  \(534528\)  =  \( 2^{11} \cdot 3^{2} \cdot 29 \)
\( I_6 \)  =  \(-1811128320\)  =  \( -1 \cdot 2^{13} \cdot 3^{2} \cdot 5 \cdot 17^{3} \)
\( I_{10} \)  =  \(-409993216\)  =  \( -1 \cdot 2^{20} \cdot 17 \cdot 23 \)
\( J_2 \)  =  \(-900\)  =  \( -1 \cdot 2^{2} \cdot 3^{2} \cdot 5^{2} \)
\( J_4 \)  =  \(28182\)  =  \( 2 \cdot 3 \cdot 7 \cdot 11 \cdot 61 \)
\( J_6 \)  =  \(64820\)  =  \( 2^{2} \cdot 5 \cdot 7 \cdot 463 \)
\( J_8 \)  =  \(-213140781\)  =  \( -1 \cdot 3^{3} \cdot 7 \cdot 17 \cdot 66337 \)
\( J_{10} \)  =  \(-100096\)  =  \( -1 \cdot 2^{8} \cdot 17 \cdot 23 \)
\( g_1 \)  =  \(2306601562500/391\)
\( g_2 \)  =  \(160505296875/782\)
\( g_3 \)  =  \(-820378125/1564\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![1,0,0]];

All rational points: (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: \(1\)

Invariants of the Jacobian:

Analytic rank: \(0\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);

2-Selmer rank: \(1\)

magma: HasSquareSha(Jacobian(C));

Order of Ш*: square

Tamagawa numbers: 1 (p = 2), 1 (p = 17), 1 (p = 23)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: \(\Z/{2}\Z\)

2-torsion field: 6.2.2598977.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).