# Properties

 Label 100069.a.100069.1 Conductor 100069 Discriminant 100069 Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands for: Magma / SageMath

## Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 1, 0, 2, 1, 1], R![0, 0, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 1, 0, 2, 1, 1]), R([0, 0, 0, 1]))

$y^2 + x^3y = x^5 + x^4 + 2x^3 + x - 1$

## Invariants

 magma: Conductor(LSeries(C)); Factorization($1); $$N$$ = $$100069$$ = $$100069$$ magma: Discriminant(C); Factorization(Integers()!$1); $$\Delta$$ = $$100069$$ = $$100069$$

### G2 invariants

magma: G2Invariants(C);

 $$I_2$$ = $$1984$$ = $$2^{6} \cdot 31$$ $$I_4$$ = $$86848$$ = $$2^{6} \cdot 23 \cdot 59$$ $$I_6$$ = $$60326400$$ = $$2^{9} \cdot 3 \cdot 5^{2} \cdot 1571$$ $$I_{10}$$ = $$409882624$$ = $$2^{12} \cdot 100069$$ $$J_2$$ = $$248$$ = $$2^{3} \cdot 31$$ $$J_4$$ = $$1658$$ = $$2 \cdot 829$$ $$J_6$$ = $$-7104$$ = $$-1 \cdot 2^{6} \cdot 3 \cdot 37$$ $$J_8$$ = $$-1127689$$ = $$-1 \cdot 563 \cdot 2003$$ $$J_{10}$$ = $$100069$$ = $$100069$$ $$g_1$$ = $$938120019968/100069$$ $$g_2$$ = $$25289460736/100069$$ $$g_3$$ = $$-436924416/100069$$
Alternative geometric invariants: G2

## Automorphism group

 magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X)$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1]) magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1])

## Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![1,-1,0],C![1,0,0],C![2,-13,1],C![2,5,1]];

Known rational points: (1 : -1 : 0), (1 : 0 : 0), (2 : -13 : 1), (2 : 5 : 1)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: $$0$$

## Invariants of the Jacobian:

Analytic rank*: $$2$$

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1); 2-Selmer rank: $$2$$ magma: HasSquareSha(Jacobian(C)); Order of Ш*: square Tamagawa numbers: 1 (p = 100069) magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: $$\mathrm{trivial}$$

### Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

### Decomposition

Simple over $$\overline{\Q}$$

### Endomorphisms

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:
 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.