Results: (displaying matches 1-50 of 4213)

Label Name Order Parity Solvable Subfields Low Degree Siblings
1T1 Trivial 1 1 Yes
2T1 $C_2$ 2 -1 Yes
3T1 $C_3$ 3 1 Yes
3T2 $S_3$ 6 -1 Yes 6T2
4T1 $C_4$ 4 -1 Yes 2T1
4T2 $V_4$ 4 1 Yes 2T1, 2T1, 2T1
4T3 $D_4$ 8 -1 Yes 2T1 4T3b, 8T4
4T4 $A_4$ 12 1 Yes 6T4, 12T4
4T5 $S_4$ 24 -1 Yes 6T7, 6T8, 8T14, 12T8, 12T9
5T1 $C_5$ 5 1 Yes
5T2 $D_5$ 10 1 Yes 10T2
5T3 $F_5$ 20 -1 Yes 10T4, 20T5
6T1 $C_6$ 6 -1 Yes 2T1, 3T1
6T2 $S_3$ 6 -1 Yes 2T1, 3T2 3T2
6T3 $S_3\times C_2$ 12 -1 Yes 2T1, 3T2 6T3b, 12T3
6T4 $A_4$ 12 1 Yes 3T1 4T4, 12T4
6T5 $S_3\times C_3$ 18 -1 Yes 2T1 9T4, 18T3
6T6 $A_4\times C_2$ 24 -1 Yes 3T1 8T13, 12T6, 12T7
6T7 $S_4$ 24 1 Yes 3T2 4T5, 6T8, 8T14, 12T8, 12T9
6T8 $S_4$ 24 -1 Yes 3T2 4T5, 6T7, 8T14, 12T8, 12T9
6T9 $S_3^2$ 36 -1 Yes 2T1 9T8, 12T16, 18T9, 18T11a, 18T11b
6T10 $C_3^2:C_4$ 36 1 Yes 2T1 6T10b, 9T9, 12T17a, 12T17b, 18T10
6T11 $S_4\times C_2$ 48 -1 Yes 3T2 6T11b, 8T24a, 8T24b, 12T21, 12T22, 12T23a, 12T23b, 12T24a, 12T24b, 16T61
6T13 $C_3^2:D_4$ 72 -1 Yes 2T1 6T13b, 9T16, 12T34a, 12T34b, 12T35a, 12T35b, 12T36a, 12T36b, 18T34a, 18T34b, 18T36
7T1 $C_7$ 7 1 Yes
7T2 $D_7$ 14 -1 Yes 14T2
7T3 $C_7:C_3$ 21 1 Yes 21T2
7T4 $F_7$ 42 -1 Yes 14T4, 21T4
8T1 $C_8$ 8 -1 Yes 2T1, 4T1
8T2 $C_4\times C_2$ 8 1 Yes 2T1, 2T1, 2T1, 4T1, 4T1, 4T2
8T3 $C_2^3$ 8 1 Yes 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2
8T4 $D_4$ 8 1 Yes 2T1, 2T1, 2T1, 4T2, 4T3, 4T3 4T3a, 4T3b
8T5 $Q_8$ 8 1 Yes 2T1, 2T1, 2T1, 4T2
8T6 $D_8$ 16 -1 Yes 2T1, 4T3 8T6b, 16T13
8T7 $C_8:C_2$ 16 -1 Yes 2T1, 4T1 16T6
8T8 $QD_{16}$ 16 -1 Yes 2T1, 4T3 16T12
8T9 $D_4\times C_2$ 16 1 Yes 2T1, 2T1, 2T1, 4T2, 4T3, 4T3 8T9b, 8T9c, 8T9d, 16T9
8T10 $C_2^2:C_4$ 16 1 Yes 2T1, 4T1, 4T3, 4T3 8T10b, 16T10
8T11 $Q_8:C_2$ 16 1 Yes 2T1, 2T1, 2T1, 4T2 8T11b, 8T11c, 16T11
8T12 $\SL(2,3)$ 24 1 Yes 4T4
8T13 $A_4\times C_2$ 24 1 Yes 2T1, 4T4 6T6, 12T6, 12T7
8T14 $S_4$ 24 1 Yes 2T1, 4T5 4T5, 6T7, 6T8, 12T8, 12T9
8T15 $Z_8 : Z_8^\times$ 32 -1 Yes 2T1, 4T3 8T15b, 16T35, 16T38a, 16T38b, 16T45
8T16 $(C_8:C_2):C_2$ 32 -1 Yes 2T1, 4T1 8T16b, 16T36, 16T41a, 16T41b
8T17 $C_4\wr C_2$ 32 -1 Yes 2T1, 4T3 8T17b, 16T28, 16T42
8T18 $V_4 \wr C_2 $ 32 1 Yes 2T1, 4T3, 4T3, 4T3 8T18b, 8T18c, 8T18d, 8T18e, 8T18f, 8T18g, 8T18h, 16T39a, 16T39b, 16T39c, 16T39d, 16T39e, 16T39f, 16T46
8T19 $C_2^3 : C_4 $ 32 1 Yes 2T1, 4T3 8T19b, 8T20, 8T21, 16T33a, 16T33b, 16T52, 16T53
8T20 $C_2^3: C_4$ 32 1 Yes 2T1, 4T1 8T19a, 8T19b, 8T21, 16T33a, 16T33b, 16T52, 16T53
8T21 $C_2^3: C_4$ 32 -1 Yes 2T1, 2T1, 2T1, 4T2 8T19a, 8T19b, 8T20, 16T33a, 16T33b, 16T52, 16T53
8T22 $C_2^3 : D_4 $ 32 1 Yes 2T1, 2T1, 2T1, 4T2 8T22b, 8T22c, 8T22d, 8T22e, 8T22f, 16T23a, 16T23b, 16T23c, 16T23d, 16T23e, 16T23f, 16T23g, 16T23h, 16T23i

Next