Learn more about

Results (displaying matches 1-50 of 150) Next

Label Name Order Parity Solvable Subfields Low Degree Siblings
1T1 Trivial 1 1 Yes
2T1 $C_2$ 2 -1 Yes
3T1 $C_3$ 3 1 Yes
3T2 $S_3$ 6 -1 Yes 6T2
4T4 $A_4$ 12 1 Yes 6T4, 12T4
4T5 $S_4$ 24 -1 Yes 6T7, 6T8, 8T14, 12T8, 12T9, 24T10
5T1 $C_5$ 5 1 Yes
5T2 $D_5$ 10 1 Yes 10T2
5T3 $F_5$ 20 -1 Yes 10T4, 20T5
5T4 $A_5$ 60 1 No 6T12, 10T7, 12T33, 15T5, 20T15, 30T9
5T5 $S_5$ 120 -1 No 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62
6T12 $\PSL(2,5)$ 60 1 No 5T4, 10T7, 12T33, 15T5, 20T15, 30T9
6T14 $\PGL(2,5)$ 120 -1 No 5T5, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62
6T15 $A_6$ 360 1 No 6T15, 10T26, 15T20 x 2, 20T89, 30T88 x 2, 36T555, 40T304, 45T49
6T16 $S_6$ 720 -1 No 6T16, 10T32, 12T183 x 2, 15T28 x 2, 20T145, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96
7T1 $C_7$ 7 1 Yes
7T2 $D_7$ 14 -1 Yes 14T2
7T3 $C_7:C_3$ 21 1 Yes 21T2
7T4 $F_7$ 42 -1 Yes 14T4, 21T4, 42T4
7T5 $\GL(3,2)$ 168 1 No 7T5, 8T37, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38 x 2
7T6 $A_7$ 2520 1 No 15T47 x 2, 21T33, 35T28, 42T294, 42T299
7T7 $S_7$ 5040 -1 No 14T46, 21T38, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418
8T25 $C_2^3:C_7$ 56 1 Yes 14T6, 28T11
8T36 $C_2^3:(C_7: C_3)$ 168 1 Yes 14T11, 24T283, 28T27, 42T26
8T37 $\PSL(2,7)$ 168 1 No 7T5 x 2, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38 x 2
8T43 $\PGL(2,7)$ 336 -1 No 14T16, 16T713, 21T20, 24T707, 28T42, 28T46, 42T81, 42T82, 42T83
8T48 $C_2^3:\GL(3,2)$ 1344 1 No 8T48, 14T34 x 2, 28T153, 28T159 x 2, 42T210 x 2, 42T211 x 2
8T49 $A_8$ 20160 1 No 15T72 x 2, 28T433, 35T36
8T50 $S_8$ 40320 -1 No 16T1838, 28T502, 30T1153, 35T44
9T9 $C_3^2:C_4$ 36 1 Yes 6T10 x 2, 12T17 x 2, 18T10, 36T14
9T14 $C_3^2:Q_8$ 72 1 Yes 12T47, 18T35 x 3, 24T82, 36T55
9T15 $C_3^2:C_8$ 72 -1 Yes 12T46, 18T28, 24T81, 36T49
9T16 $S_3^2:C_2$ 72 -1 Yes 6T13 x 2, 12T34 x 2, 12T35 x 2, 12T36 x 2, 18T34 x 2, 18T36, 24T72 x 2, 36T53, 36T54 x 2
9T19 $(C_3^2:C_8):C_2$ 144 -1 Yes 12T84, 18T68, 18T71, 18T73, 24T278, 24T279, 24T280, 36T171, 36T172, 36T175
9T23 $(C_3^2:Q_8):C_3$ 216 1 Yes 12T122, 24T562, 24T569, 27T82, 36T287, 36T309
9T26 $((C_3^2:Q_8):C_3):C_2$ 432 -1 Yes 12T157, 18T157, 24T1325, 24T1326, 24T1327, 24T1334, 27T139, 36T689, 36T709
9T27 $\PSL(2,8)$ 504 1 No 28T70, 36T712
9T32 $\mathrm{P}\Gamma\mathrm{L}(2,8)$ 1512 1 No 27T391, 28T165, 36T2342
9T33 $A_9$ 181440 1 No 36T23796
9T34 $S_9$ 362880 -1 No 18T887, 36T28590
10T7 $A_{5}$ 60 1 No 5T4, 6T12, 12T33, 15T5, 20T15, 30T9
10T13 $S_5$ 120 -1 No 5T5, 6T14, 10T12, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62
10T26 $\PSL(2,9)$ 360 1 No 6T15 x 2, 15T20 x 2, 20T89, 30T88 x 2, 36T555, 40T304, 45T49
10T30 $\PGL(2,9)$ 720 -1 No 12T182, 20T146, 30T171, 36T1254, 40T590, 45T110
10T31 $M_{10}$ 720 1 No 12T181, 20T148, 20T150 x 2, 30T162, 36T1253, 40T591, 45T109
10T32 $S_{6}$ 720 -1 No 6T16 x 2, 12T183 x 2, 15T28 x 2, 20T145, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96
10T35 $(A_6 : C_2) : C_2$ 1440 -1 No 12T220, 20T201, 20T204, 20T208, 24T2960, 30T264, 36T2341, 40T1198, 40T1199, 40T1201, 45T187
10T44 $A_{10}$ 1814400 1 No 45T1982
10T45 $S_{10}$ 3628800 -1 No 20T1007, 45T2246
11T1 $C_{11}$ 11 1 Yes

Next

Results are complete for degrees $\leq 23$.