Results: (displaying matches 1-50 of 2469)

Label Name Order Parity Solvable Subfields Low Degree Siblings
1T1 Trivial 1 1 Yes
3T1 $C_3$ 3 1 Yes
4T2 $V_4$ 4 1 Yes 2T1, 2T1, 2T1
4T4 $A_4$ 12 1 Yes 6T4, 12T4
5T1 $C_5$ 5 1 Yes
5T2 $D_5$ 10 1 Yes 10T2
5T4 $A_5$ 60 1 No 6T12, 10T7, 12T33, 15T5, 20T15
6T4 $A_4$ 12 1 Yes 3T1 4T4, 12T4
6T7 $S_4$ 24 1 Yes 3T2 4T5, 6T8, 8T14, 12T8, 12T9
6T10 $C_3^2:C_4$ 36 1 Yes 2T1 6T10b, 9T9, 12T17a, 12T17b, 18T10
6T12 $\PSL(2,5)$ 60 1 No 5T4, 10T7, 12T33, 15T5, 20T15
6T15 $A_6$ 360 1 No 6T15b, 10T26, 15T20a, 15T20b, 20T89
7T1 $C_7$ 7 1 Yes
7T3 $C_7:C_3$ 21 1 Yes 21T2
7T5 $\GL(3,2)$ 168 1 No 7T5b, 8T37, 14T10a, 14T10b, 21T14
7T6 $A_7$ 2520 1 No 15T47a, 15T47b, 21T33
8T2 $C_4\times C_2$ 8 1 Yes 2T1, 2T1, 2T1, 4T1, 4T1, 4T2
8T3 $C_2^3$ 8 1 Yes 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2
8T4 $D_4$ 8 1 Yes 2T1, 2T1, 2T1, 4T2, 4T3, 4T3 4T3a, 4T3b
8T5 $Q_8$ 8 1 Yes 2T1, 2T1, 2T1, 4T2
8T9 $D_4\times C_2$ 16 1 Yes 2T1, 2T1, 2T1, 4T2, 4T3, 4T3 8T9b, 8T9c, 8T9d, 16T9
8T10 $C_2^2:C_4$ 16 1 Yes 2T1, 4T1, 4T3, 4T3 8T10b, 16T10
8T11 $Q_8:C_2$ 16 1 Yes 2T1, 2T1, 2T1, 4T2 8T11b, 8T11c, 16T11
8T12 $\SL(2,3)$ 24 1 Yes 4T4
8T13 $A_4\times C_2$ 24 1 Yes 2T1, 4T4 6T6, 12T6, 12T7
8T14 $S_4$ 24 1 Yes 2T1, 4T5 4T5, 6T7, 6T8, 12T8, 12T9
8T18 $V_4 \wr C_2 $ 32 1 Yes 2T1, 4T3, 4T3, 4T3 8T18b, 8T18c, 8T18d, 8T18e, 8T18f, 8T18g, 8T18h, 16T39a, 16T39b, 16T39c, 16T39d, 16T39e, 16T39f, 16T46
8T19 $C_2^3 : C_4 $ 32 1 Yes 2T1, 4T3 8T19b, 8T20, 8T21, 16T33a, 16T33b, 16T52, 16T53
8T20 $C_2^3: C_4$ 32 1 Yes 2T1, 4T1 8T19a, 8T19b, 8T21, 16T33a, 16T33b, 16T52, 16T53
8T22 $C_2^3 : D_4 $ 32 1 Yes 2T1, 2T1, 2T1, 4T2 8T22b, 8T22c, 8T22d, 8T22e, 8T22f, 16T23a, 16T23b, 16T23c, 16T23d, 16T23e, 16T23f, 16T23g, 16T23h, 16T23i
8T24 $S_4\times C_2$ 48 1 Yes 2T1, 4T5 6T11a, 6T11b, 8T24b, 12T21, 12T22, 12T23a, 12T23b, 12T24a, 12T24b, 16T61
8T25 $C_2^3:C_7$ 56 1 Yes 14T6
8T29 64 1 Yes 2T1, 4T3 8T29b, 8T29c, 8T29d, 8T29e, 8T29f, 8T31a, 8T31b, 16T127, 16T128a, 16T128b, 16T128c, 16T129a, 16T129b, 16T129c, 16T147, 16T149a, 16T149b, 16T149c, 16T149d, 16T149e, 16T149f, 16T150a, 16T150b, 16T150c
8T32 96 1 Yes 4T4 8T32b, 8T32c
8T33 $C_2^4:C_6$ 96 1 Yes 2T1 8T33b, 12T58a, 12T58b, 12T59a, 12T59b, 16T183
8T34 $V_4^2:S_3$ 96 1 Yes 2T1 12T66a, 12T66b, 12T66c, 12T67, 12T68a, 12T68b, 12T68c, 12T69, 16T194
8T36 $C_2^3:(C_7: C_3)$ 168 1 Yes 14T11
8T37 $\PSL(2,7)$ 168 1 No 7T5a, 7T5b, 14T10a, 14T10b, 21T14
8T39 $C_2^3:S_4$ 192 1 Yes 4T5 8T39b, 8T39c, 8T39d, 8T39e, 8T39f, 16T442a, 16T442b, 16T442c
8T41 $V_4^2:(S_3\times C_2)$ 192 1 Yes 2T1 8T41b, 12T108a, 12T108b, 12T109a, 12T109b, 12T110a, 12T110b, 12T111a, 12T111b, 16T435a, 16T435b, 16T436
8T42 $A_4\wr C_2$ 288 1 Yes 2T1 12T126, 12T128, 12T129, 16T708, 18T112, 18T113
8T45 $(A_4\wr C_2):C_2$ 576 1 Yes 2T1 12T161, 12T163, 12T165a, 12T165b, 16T1032, 16T1034, 18T179, 18T180, 18T185a, 18T185b
8T48 $C_2^3:\GL(3,2)$ 1344 1 No 8T48b, 14T34a, 14T34b
8T49 $A_8$ 20160 1 No 15T72a, 15T72b
9T1 $C_9$ 9 1 Yes 3T1
9T2 $C_3^2$ 9 1 Yes 3T1, 3T1, 3T1, 3T1
9T3 $D_9$ 18 1 Yes 3T2 18T5
9T5 $C_3^2:C_2$ 18 1 Yes 3T2, 3T2, 3T2, 3T2 18T4
9T6 $C_9:C_3$ 27 1 Yes 3T1
9T7 $C_3^2:C_3$ 27 1 Yes 3T1 9T7b, 9T7c, 9T7d

Next