Results: (displaying matches 1-50 of 2484)

Label Name Order Parity Solvable Subfields Low Degree Siblings
2T1 $C_2$ 2 -1 Yes
3T2 $S_3$ 6 -1 Yes 6T2
4T1 $C_4$ 4 -1 Yes 2T1
4T3 $D_4$ 8 -1 Yes 2T1 4T3b, 8T4
4T5 $S_4$ 24 -1 Yes 6T7, 6T8, 8T14, 12T8, 12T9
5T3 $F_5$ 20 -1 Yes 10T4, 20T5
5T5 $S_5$ 120 -1 No 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35
6T1 $C_6$ 6 -1 Yes 2T1, 3T1
6T2 $S_3$ 6 -1 Yes 2T1, 3T2 3T2
6T3 $S_3\times C_2$ 12 -1 Yes 2T1, 3T2 6T3b, 12T3
6T5 $S_3\times C_3$ 18 -1 Yes 2T1 9T4, 18T3
6T6 $A_4\times C_2$ 24 -1 Yes 3T1 8T13, 12T6, 12T7
6T8 $S_4$ 24 -1 Yes 3T2 4T5, 6T7, 8T14, 12T8, 12T9
6T9 $S_3^2$ 36 -1 Yes 2T1 9T8, 12T16, 18T9, 18T11a, 18T11b
6T11 $S_4\times C_2$ 48 -1 Yes 3T2 6T11b, 8T24a, 8T24b, 12T21, 12T22, 12T23a, 12T23b, 12T24a, 12T24b, 16T61
6T13 $C_3^2:D_4$ 72 -1 Yes 2T1 6T13b, 9T16, 12T34a, 12T34b, 12T35a, 12T35b, 12T36a, 12T36b, 18T34a, 18T34b, 18T36
6T14 $\PGL(2,5)$ 120 -1 No 5T5, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35
6T16 $S_6$ 720 -1 No 6T16b, 10T32, 12T183a, 12T183b, 15T28a, 15T28b, 20T145, 20T149a, 20T149b
7T2 $D_7$ 14 -1 Yes 14T2
7T4 $F_7$ 42 -1 Yes 14T4, 21T4
7T7 $S_7$ 5040 -1 No 14T46, 21T38
8T1 $C_8$ 8 -1 Yes 2T1, 4T1
8T6 $D_8$ 16 -1 Yes 2T1, 4T3 8T6b, 16T13
8T7 $C_8:C_2$ 16 -1 Yes 2T1, 4T1 16T6
8T8 $QD_{16}$ 16 -1 Yes 2T1, 4T3 16T12
8T15 $Z_8 : Z_8^\times$ 32 -1 Yes 2T1, 4T3 8T15b, 16T35, 16T38a, 16T38b, 16T45
8T16 $(C_8:C_2):C_2$ 32 -1 Yes 2T1, 4T1 8T16b, 16T36, 16T41a, 16T41b
8T17 $C_4\wr C_2$ 32 -1 Yes 2T1, 4T3 8T17b, 16T28, 16T42
8T21 $C_2^3: C_4$ 32 -1 Yes 2T1, 2T1, 2T1, 4T2 8T19a, 8T19b, 8T20, 16T33a, 16T33b, 16T52, 16T53
8T23 $\textrm{GL(2,3)}$ 48 -1 Yes 4T5 8T23b, 16T66
8T26 64 -1 Yes 2T1, 4T3 8T26b, 8T26c, 8T26d, 16T135a, 16T135b, 16T141a, 16T141b, 16T142a, 16T142b, 16T152a, 16T152b
8T27 64 -1 Yes 2T1, 4T1 8T27b, 8T28a, 8T28b, 16T130, 16T157a, 16T157b, 16T158a, 16T158b, 16T159a, 16T159b, 16T166, 16T170, 16T171, 16T172
8T28 64 -1 Yes 2T1, 4T3 8T27a, 8T27b, 8T28b, 16T130, 16T157a, 16T157b, 16T158a, 16T158b, 16T159a, 16T159b, 16T166, 16T170, 16T171, 16T172
8T30 64 -1 Yes 2T1, 4T3 8T30b, 8T30c, 8T30d, 16T143a, 16T143b, 16T167a, 16T167b, 16T168a, 16T168b, 16T169a, 16T169b
8T31 64 -1 Yes 2T1, 2T1, 2T1, 4T2 8T29a, 8T29b, 8T29c, 8T29d, 8T29e, 8T29f, 8T31b, 16T127, 16T128a, 16T128b, 16T128c, 16T129a, 16T129b, 16T129c, 16T147, 16T149a, 16T149b, 16T149c, 16T149d, 16T149e, 16T149f, 16T150a, 16T150b, 16T150c
8T35 $C_2 \wr C_2\wr C_2$ 128 -1 Yes 2T1, 4T3 8T35b, 8T35c, 8T35d, 8T35e, 8T35f, 8T35g, 8T35h, 16T376a, 16T376b, 16T376c, 16T376d, 16T388a, 16T388b, 16T388c, 16T388d, 16T390a, 16T390b, 16T390c, 16T390d, 16T391a, 16T391b, 16T391c, 16T391d, 16T393a, 16T393b, 16T393c, 16T393d, 16T395a, 16T395b, 16T395c, 16T395d, 16T396a, 16T396b, 16T396c, 16T396d, 16T401a, 16T401b, 16T401c, 16T401d
8T38 $C_2\wr A_4$ 192 -1 Yes 4T4 8T38b, 16T425, 16T427
8T40 $Q_8:S_4$ 192 -1 Yes 4T5 8T40b, 16T444, 16T445
8T43 $\PGL(2,7)$ 336 -1 No 14T16, 16T713, 21T20
8T44 $C_2 \wr S_4$ 384 -1 Yes 4T5 8T44b, 8T44c, 8T44d, 16T736a, 16T736b, 16T743a, 16T743b, 16T748a, 16T748b, 16T752a, 16T752b
8T46 $A_4^2:C_4$ 576 -1 Yes 2T1 12T160, 12T162, 16T1030, 16T1031, 18T182, 18T184
8T47 $S_4\wr C_2$ 1152 -1 Yes 2T1 12T200, 12T201, 12T202, 12T203, 16T1292, 16T1294, 16T1295, 16T1296, 18T272, 18T273, 18T274, 18T275
8T50 $S_8$ 40320 -1 No 16T1838
9T4 $S_3\times C_3$ 18 -1 Yes 3T1, 3T2 6T5, 18T3
9T8 $S_3^2$ 36 -1 Yes 3T2, 3T2 6T9, 12T16, 18T9, 18T11a, 18T11b
9T12 $(C_3^2:C_3):C_2$ 54 -1 Yes 3T2 9T12b, 9T12c, 9T12d, 18T24a, 18T24b, 18T24c, 18T24d
9T13 $C_3^2 : S_3 $ 54 -1 Yes 3T1 9T11, 18T20, 18T21, 18T22
9T15 $C_3^2:C_8$ 72 -1 Yes 12T46, 18T28
9T16 $S_3^2:C_2$ 72 -1 Yes 6T13a, 6T13b, 12T34a, 12T34b, 12T35a, 12T35b, 12T36a, 12T36b, 18T34a, 18T34b, 18T36
9T18 $C_3^2 : D_{6} $ 108 -1 Yes 3T2 9T18b, 18T51a, 18T51b, 18T55a, 18T55b, 18T56, 18T57a, 18T57b

Next