Results: (displaying all 34 matches)

Label Name Order Parity Solvable Subfields Low Degree Siblings
9T1 $C_9$ 9 1 Yes 3T1
9T2 $C_3^2$ 9 1 Yes 3T1, 3T1, 3T1, 3T1
9T3 $D_9$ 18 1 Yes 3T2 18T5
9T4 $S_3\times C_3$ 18 -1 Yes 3T1, 3T2 6T5, 18T3
9T5 $C_3^2:C_2$ 18 1 Yes 3T2, 3T2, 3T2, 3T2 18T4
9T6 $C_9:C_3$ 27 1 Yes 3T1
9T7 $C_3^2:C_3$ 27 1 Yes 3T1 9T7b, 9T7c, 9T7d
9T8 $S_3^2$ 36 -1 Yes 3T2, 3T2 6T9, 12T16, 18T9, 18T11a, 18T11b
9T9 $C_3^2:C_4$ 36 1 Yes 6T10a, 6T10b, 12T17a, 12T17b, 18T10
9T10 $(C_9:C_3):C_2$ 54 1 Yes 3T2 18T18
9T11 $C_3^2 : C_6$ 54 1 Yes 3T2 9T13, 18T20, 18T21, 18T22
9T12 $(C_3^2:C_3):C_2$ 54 -1 Yes 3T2 9T12b, 9T12c, 9T12d, 18T24a, 18T24b, 18T24c, 18T24d
9T13 $C_3^2 : S_3 $ 54 -1 Yes 3T1 9T11, 18T20, 18T21, 18T22
9T14 $C_3^2:Q_8$ 72 1 Yes 12T47, 18T35a, 18T35b, 18T35c
9T15 $C_3^2:C_8$ 72 -1 Yes 12T46, 18T28
9T16 $S_3^2:C_2$ 72 -1 Yes 6T13a, 6T13b, 12T34a, 12T34b, 12T35a, 12T35b, 12T36a, 12T36b, 18T34a, 18T34b, 18T36
9T17 $C_3 \wr C_3 $ 81 1 Yes 3T1 9T17b, 9T17c
9T18 $C_3^2 : D_{6} $ 108 -1 Yes 3T2 9T18b, 18T51a, 18T51b, 18T55a, 18T55b, 18T56, 18T57a, 18T57b
9T19 $(C_3^2:C_8):C_2$ 144 -1 Yes 12T84, 18T68, 18T71, 18T73
9T20 $C_3 \wr S_3 $ 162 -1 Yes 3T2 9T20b, 9T20c, 18T86a, 18T86b, 18T86c
9T21 $(C_3^3:C_3):C_2$ 162 1 Yes 3T2 9T21b, 9T21c, 18T88a, 18T88b, 18T88c
9T22 $(C_3^2:C_3):C_2$ 162 -1 Yes 3T1 9T22b, 9T22c, 18T85a, 18T85b, 18T85c
9T23 $(C_3^2:Q_8):C_3$ 216 1 Yes 12T122
9T24 $((C_3^3:C_3):C_2):C_2$ 324 -1 Yes 3T2 9T24b, 9T24c, 18T129a, 18T129b, 18T129c, 18T136a, 18T136b, 18T136c, 18T137a, 18T137b, 18T137c
9T25 324 1 Yes 3T1 12T132a, 12T132b, 12T133, 18T141a, 18T141b, 18T142, 18T143
9T26 $((C_3^2:Q_8):C_3):C_2$ 432 -1 Yes 12T157, 18T157
9T27 $\PSL(2,8)$ 504 1 No
9T28 $S_3 \wr C_3 $ 648 -1 Yes 3T1 12T176, 18T197a, 18T197b, 18T198a, 18T198b, 18T202, 18T204, 18T206, 18T207
9T29 648 -1 Yes 3T2 12T175, 18T219, 18T220, 18T223, 18T224
9T30 648 1 Yes 3T2 12T177a, 12T177b, 12T178, 18T217, 18T218, 18T221, 18T222
9T31 $S_3\wr S_3$ 1296 -1 Yes 3T2 12T213, 18T300, 18T303, 18T311, 18T312, 18T314, 18T315, 18T319, 18T320
9T32 $\mathrm{P}\Gamma\mathrm{L}(2,8)$ 1512 1 No
9T33 $A_9$ 181440 1 No
9T34 $S_9$ 362880 -1 No 18T887