Learn more about

Results (displaying matches 1-50 of 983) Next

Label Name Order Parity Solvable Subfields Low Degree Siblings
18T1 $C_{18}$ 18 -1 Yes $C_2$, $C_3$, $C_6$, $C_9$
18T2 $C_6 \times C_3$ 18 -1 Yes $C_2$, $C_3$ x 4, $C_6$ x 4, $C_3^2$
18T3 $S_3 \times C_3$ 18 -1 Yes $C_2$, $C_3$, $S_3$, $C_6$, $S_3$, $S_3\times C_3$, $S_3\times C_3$ 6T5, 9T4
18T4 $C_3^2 : C_2$ 18 -1 Yes $C_2$, $S_3$ x 4, $S_3$ x 4, $C_3^2:C_2$ 9T5
18T5 $D_9$ 18 -1 Yes $C_2$, $S_3$, $S_3$, $D_{9}$ 9T3
18T6 $S_3 \times C_6$ 36 -1 Yes $C_2$, $C_3$, $S_3$, $C_6$, $D_{6}$, $S_3\times C_3$ 12T18, 18T6
18T7 $C_2^2 : C_9$ 36 1 Yes $C_3$, $A_4$, $C_9$
18T8 $A_4 \times C_3$ 36 1 Yes $C_3$ x 4, $A_4$, $C_3^2$ 12T20 x 3
18T9 $S_3^2$ 36 -1 Yes $C_2$, $S_3$ x 2, $D_{6}$ x 2, $S_3^2$, $S_3^2$ 6T9, 9T8, 12T16, 18T11 x 2
18T10 $C_3^2 : C_4$ 36 -1 Yes $C_2$, $C_3^2:C_4$ x 2, $C_3^2:C_4$ 6T10 x 2, 9T9, 12T17 x 2
18T11 $S_3^2$ 36 -1 Yes $C_2$, $S_3$ x 2, $S_3$, $D_{6}$, $S_3^2$ 6T9, 9T8, 12T16, 18T9, 18T11
18T12 $C_2\times C_3:S_3$ 36 -1 Yes $C_2$, $S_3$ x 4, $D_{6}$ x 4, $C_3^2:C_2$ 18T12
18T13 $D_{18}$ 36 -1 Yes $C_2$, $S_3$, $D_{6}$, $D_{9}$ 18T13
18T14 $C_2\times C_9:C_3$ 54 -1 Yes $C_2$, $C_3$, $C_6$, $C_9:C_3$
18T15 $C_2\times He_3$ 54 -1 Yes $C_2$, $C_3$, $C_6$, $C_3^2:C_3$ 18T15 x 3
18T16 $C_9\times S_3$ 54 -1 Yes $C_2$, $C_3$, $C_6$
18T17 $C_3^2\times S_3$ 54 -1 Yes $C_2$, $C_3$, $C_6$, $S_3\times C_3$ x 3 18T17 x 3
18T18 $D_9:C_3$ 54 -1 Yes $C_2$, $S_3$, $S_3$, $(C_9:C_3):C_2$ 9T10
18T19 $C_3\times D_9$ 54 -1 Yes $C_2$, $S_3$, $S_3$
18T20 $He_3:C_2$ 54 -1 Yes $C_2$, $C_3$, $C_6$, $C_3^2 : S_3 $ 9T11, 9T13, 18T21, 18T22
18T21 $He_3:C_2$ 54 -1 Yes $C_2$, $S_3$, $S_3$, $C_3^2 : C_6$ 9T11, 9T13, 18T20, 18T22
18T22 $He_3:C_2$ 54 -1 Yes $C_2$, $S_3\times C_3$ 9T11, 9T13, 18T20, 18T21
18T23 $C_3\times C_3:S_3$ 54 -1 Yes $C_2$, $S_3$, $S_3$, $S_3\times C_3$ x 3 18T23 x 3
18T24 $C_3^2:S_3$ 54 -1 Yes $C_2$, $S_3$, $S_3$, $(C_3^2:C_3):C_2$ 9T12 x 4, 18T24 x 3
18T25 $C_6\times A_4$ 72 -1 Yes $C_3$ x 4, $A_4\times C_2$, $C_3^2$
18T26 $C_2\times C_2^2:C_9$ 72 -1 Yes $C_3$, $A_4\times C_2$, $C_9$
18T27 $C_2\times C_3:S_3.C_2$ 72 -1 Yes $C_2$, $C_3^2:C_4$ 12T40 x 2, 12T41 x 2, 18T27
18T28 $F_9$ 72 -1 Yes $C_2$, $C_3^2:C_8$ 9T15, 12T46
18T29 $C_2\times S_3^2$ 72 -1 Yes $C_2$, $S_3$ x 2, $D_{6}$ x 2, $S_3^2$ 12T37 x 2, 18T29 x 3
18T30 $C_3\times S_4$ 72 -1 Yes $C_3$, $S_3$, $S_4$, $S_3\times C_3$ 12T45, 18T33
18T31 $S_3\times A_4$ 72 1 Yes $C_3$, $S_3$, $A_4$, $S_3\times C_3$ 12T43, 18T32
18T32 $S_3\times A_4$ 72 -1 Yes $C_3$, $S_3$, $A_4\times C_2$, $S_3\times C_3$ 12T43, 18T31
18T33 $C_3\times S_4$ 72 1 Yes $C_3$, $S_3$, $S_4$, $S_3\times C_3$ 12T45, 18T30
18T34 $S_3\wr C_2$ 72 -1 Yes $C_2$, $C_3^2:D_4$, $S_3^2:C_2$ 6T13 x 2, 9T16, 12T34 x 2, 12T35 x 2, 12T36 x 2, 18T34, 18T36
18T35 $PSU(3,2)$ 72 -1 Yes $C_2$, $C_3^2:Q_8$ 9T14, 12T47, 18T35 x 2
18T36 $S_3\wr C_2$ 72 -1 Yes $C_2$, $S_3^2:C_2$ 6T13 x 2, 9T16, 12T34 x 2, 12T35 x 2, 12T36 x 2, 18T34 x 2
18T37 $C_3:S_4$ 72 1 Yes $S_3$ x 4, $S_4$, $C_3^2:C_2$ 12T44 x 3, 18T40
18T38 $C_2^2:D_9$ 72 1 Yes $S_3$, $S_4$, $D_{9}$ 18T39
18T39 $C_2^2:D_9$ 72 -1 Yes $S_3$, $S_4$, $D_{9}$ 18T38
18T40 $C_3:S_4$ 72 -1 Yes $S_3$ x 4, $S_4$, $C_3^2:C_2$ 12T44 x 3, 18T37
18T41 $C_2\times He_3:C_2$ 108 -1 Yes $C_2$, $S_3$, $D_{6}$, $C_3^2 : C_6$ 18T41, 18T42 x 2
18T42 $C_2\times He_3:C_2$ 108 -1 Yes $C_2$, $C_3$, $C_6$, $C_3^2 : S_3 $ 18T41 x 2, 18T42
18T43 $C_3\times S_3^2$ 108 -1 Yes $C_2$, $C_3$, $C_6$, $S_3^2$ 12T70, 18T46 x 2
18T44 $C_3\times C_3:S_3.C_2$ 108 1 Yes $C_2$, $C_3$, $C_6$, $C_3^2:C_4$ 12T73 x 2, 18T44
18T45 $C_2\times D_9:C_3$ 108 -1 Yes $C_2$, $S_3$, $D_{6}$, $(C_9:C_3):C_2$ 18T45
18T46 $C_3\times S_3^2$ 108 -1 Yes $C_2$, $S_3$, $D_{6}$, $S_3\times C_3$ 12T70, 18T43, 18T46
18T47 $C_3^2.A_4$ 108 1 Yes $C_3$, $A_4$, $C_9:C_3$ 18T47 x 2
18T48 $C_6^2:C_3$ 108 1 Yes $C_3$, $A_4$, $C_3^2:C_3$ 18T48 x 2
18T49 $C_3^2:S_3.C_2$ 108 1 Yes $C_2$, $C_3^2:C_4$ 18T49
18T50 $S_3\times D_9$ 108 -1 Yes $C_2$, $S_3$, $D_{6}$

Next

Results are complete for degrees $\leq 23$.