Results: (displaying matches 1-50 of 301)

Label Name Order Parity Solvable Subfields Low Degree Siblings
12T1 $C_{12}$ 12 -1 Yes 2T1, 3T1, 4T1, 6T1
12T2 $C_6\times C_2$ 12 1 Yes 2T1, 2T1, 2T1, 3T1, 4T2, 6T1, 6T1, 6T1
12T3 $D_6$ 12 1 Yes 2T1, 2T1, 2T1, 3T2, 4T2, 6T2, 6T3, 6T3 6T3a, 6T3b
12T4 $A_4$ 12 1 Yes 3T1, 4T4, 6T4 4T4, 6T4
12T5 $C_3 : C_4$ 12 -1 Yes 2T1, 3T2, 4T1, 6T2
12T6 $A_4\times C_2$ 24 1 Yes 3T1, 6T4, 6T6 6T6, 8T13, 12T7
12T7 $A_4 \times C_2$ 24 1 Yes 2T1, 3T1, 6T1, 6T4, 6T6 6T6, 8T13, 12T6
12T8 $S_4$ 24 -1 Yes 3T2, 4T5, 6T7 4T5, 6T7, 6T8, 8T14, 12T9
12T9 $S_4$ 24 1 Yes 2T1, 3T2, 6T2, 6T7, 6T8 4T5, 6T7, 6T8, 8T14, 12T8
12T10 $S_3 \times C_2^2$ 24 1 Yes 2T1, 2T1, 2T1, 3T2, 4T2, 6T3, 6T3, 6T3 12T10b, 12T10c, 12T10d
12T11 $S_3 \times C_4$ 24 -1 Yes 2T1, 3T2, 4T1, 6T3 12T11b
12T12 $D_{12}$ 24 -1 Yes 2T1, 3T2, 4T3, 6T3 12T12b
12T13 $(C_6\times C_2):C_2$ 24 -1 Yes 2T1, 3T2, 4T3, 6T3 12T15
12T14 $D_4 \times C_3$ 24 -1 Yes 2T1, 3T1, 4T3, 6T1 12T14b
12T15 $(C_6\times C_2):C_2$ 24 -1 Yes 2T1, 3T2, 4T3, 6T2 12T13
12T16 $S_3^2$ 36 1 Yes 2T1, 2T1, 2T1, 4T2, 6T9 6T9, 9T8, 18T9, 18T11a, 18T11b
12T17 $(C_3\times C_3):C_4$ 36 -1 Yes 2T1, 4T1, 6T10 6T10a, 6T10b, 9T9, 12T17b, 18T10
12T18 $C_6\times S_3$ 36 1 Yes 2T1, 2T1, 2T1, 4T2, 6T5 18T6a, 18T6b
12T19 $C_3\times (C_3 : C_4)$ 36 -1 Yes 2T1, 4T1, 6T5
12T20 $C_3\times A_4$ 36 1 Yes 3T1, 4T4 12T20b, 12T20c, 18T8
12T21 $C_2\times S_4$ 48 1 Yes 2T1, 3T2, 6T2, 6T11, 6T11 6T11a, 6T11b, 8T24a, 8T24b, 12T22, 12T23a, 12T23b, 12T24a, 12T24b, 16T61
12T22 48 -1 Yes 3T2, 6T7 6T11a, 6T11b, 8T24a, 8T24b, 12T21, 12T23a, 12T23b, 12T24a, 12T24b, 16T61
12T23 48 1 Yes 2T1, 3T2, 6T3, 6T7, 6T11 6T11a, 6T11b, 8T24a, 8T24b, 12T21, 12T22, 12T23b, 12T24a, 12T24b, 16T61
12T24 48 1 Yes 2T1, 3T2, 6T3, 6T8, 6T11 6T11a, 6T11b, 8T24a, 8T24b, 12T21, 12T22, 12T23a, 12T23b, 12T24b, 16T61
12T25 48 1 Yes 2T1, 3T1, 6T1, 6T6, 6T6 12T25b, 12T25c, 12T26a, 12T26b, 16T58
12T26 48 1 Yes 3T1, 6T6, 6T6, 6T6 12T25a, 12T25b, 12T25c, 12T26b, 16T58
12T27 48 -1 Yes 3T2, 6T8 12T30, 16T62
12T28 48 -1 Yes 2T1, 3T2, 4T3, 6T3 12T28b, 12T28c, 12T28d
12T29 48 -1 Yes 2T1, 3T1, 6T1 16T57
12T30 48 -1 Yes 2T1, 3T2, 6T2 12T27, 16T62
12T31 48 1 Yes 3T1, 6T4 12T31b, 16T63
12T32 $C_2^4:C_3$ 48 1 Yes 3T1, 6T4, 6T4, 6T4 12T32b, 12T32c, 12T32d, 12T32e, 12T32f, 12T32g, 12T32h, 12T32i, 12T32j, 16T64
12T33 60 1 No 6T12 5T4, 6T12, 10T7, 15T5, 20T15
12T34 72 1 Yes 2T1, 2T1, 2T1, 4T2, 6T13 6T13a, 6T13b, 9T16, 12T34b, 12T35a, 12T35b, 12T36a, 12T36b, 18T34a, 18T34b, 18T36
12T35 72 -1 Yes 2T1, 4T3, 6T13 6T13a, 6T13b, 9T16, 12T34a, 12T34b, 12T35b, 12T36a, 12T36b, 18T34a, 18T34b, 18T36
12T36 72 -1 Yes 2T1, 4T3, 6T13 6T13a, 6T13b, 9T16, 12T34a, 12T34b, 12T35a, 12T35b, 12T36b, 18T34a, 18T34b, 18T36
12T37 72 1 Yes 2T1, 2T1, 2T1, 4T2, 6T9 12T37b, 18T29a, 18T29b, 18T29c, 18T29d
12T38 72 -1 Yes 2T1, 4T3, 6T9 12T38b
12T39 72 -1 Yes 2T1, 4T1, 6T9 12T39b
12T40 72 1 Yes 2T1, 2T1, 2T1, 4T2, 6T10 12T40b, 12T41a, 12T41b, 18T27a, 18T27b
12T41 72 -1 Yes 2T1, 4T1, 6T10 12T40a, 12T40b, 12T41b, 18T27a, 18T27b
12T42 72 -1 Yes 2T1, 4T3, 6T5 12T42b
12T43 72 1 Yes 3T2, 4T4 18T31, 18T32
12T44 72 -1 Yes 3T2, 4T5 12T44b, 12T44c, 18T37, 18T40
12T45 72 -1 Yes 3T1, 4T5 18T30, 18T33
12T46 72 1 Yes 2T1, 4T1 9T15, 18T28
12T47 72 1 Yes 2T1, 2T1, 2T1, 4T2 9T14, 18T35a, 18T35b, 18T35c
12T48 96 1 Yes 2T1, 3T2, 6T3, 6T11, 6T11 12T48b, 12T48c, 12T48d, 12T48e, 12T48f, 12T48g, 12T48h, 12T48i, 12T48j, 12T48k, 12T48l, 16T182a, 16T182b, 16T182c, 16T182d
12T49 96 -1 Yes 3T2, 6T11 12T49b, 12T50, 12T52, 16T186, 16T193
12T50 96 -1 Yes 2T1, 3T2, 6T2 12T49a, 12T49b, 12T52, 16T186, 16T193

Next