Properties

Label 8T29
Order \(64\)
n \(8\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $(((C_4 \times C_2): C_2):C_2):C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $8$
Transitive number $t$ :  $29$
Group :  $(((C_4 \times C_2): C_2):C_2):C_2$
CHM label :  $E(8):D_{8}=[2^{3}]D(4)$
Parity:  $1$
Primitive:  No
Generators:  (2,8)(4,5,6,7), (1,4,3,6)(2,5,8,7), (1,8,3,2)(4,7,6,5)
$|\Aut(F/K)|$:  $2$
Low degree resolvents:  
2: $C_2$ x 7
4: $V_4$ x 7
8: $D_4$ x 6, $C_2^3$
16: $D_4\times C_2$ x 3
32: $V_4 \wr C_2 $

Subfields

Degree 2: $C_2$

Degree 4: $D_4$

Low degree siblings

8T29 x 5, 8T31 x 2, 16T127, 16T128 x 3, 16T129 x 3, 16T147, 16T149 x 6, 16T150 x 3, 32T136 x 3, 32T137 x 2, 32T163 x 3
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1 $ $4$ $2$ $(4,5)(6,7)$
$ 2, 2, 1, 1, 1, 1 $ $2$ $2$ $(4,6)(5,7)$
$ 2, 2, 1, 1, 1, 1 $ $4$ $2$ $(2,8)(5,7)$
$ 4, 2, 1, 1 $ $8$ $4$ $(2,8)(4,5,6,7)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,2)(3,8)(4,5)(6,7)$
$ 2, 2, 2, 2 $ $4$ $2$ $(1,2)(3,8)(4,6)(5,7)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,2)(3,8)(4,7)(5,6)$
$ 4, 4 $ $4$ $4$ $(1,2,3,8)(4,5,6,7)$
$ 2, 2, 2, 2 $ $1$ $2$ $(1,3)(2,8)(4,6)(5,7)$
$ 2, 2, 2, 2 $ $4$ $2$ $(1,4)(2,5)(3,6)(7,8)$
$ 4, 4 $ $8$ $4$ $(1,4,2,5)(3,6,8,7)$
$ 4, 4 $ $4$ $4$ $(1,4,3,6)(2,5,8,7)$
$ 2, 2, 2, 2 $ $4$ $2$ $(1,4)(2,7)(3,6)(5,8)$
$ 4, 4 $ $8$ $4$ $(1,4,2,7)(3,6,8,5)$
$ 4, 4 $ $4$ $4$ $(1,4,3,6)(2,7,8,5)$

Group invariants

Order:  $64=2^{6}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [64, 138]
Character table:  
      2  6  4  5  4  3  5  4  5  4  6  4  3  4  4  3  4

        1a 2a 2b 2c 4a 2d 2e 2f 4b 2g 2h 4c 4d 2i 4e 4f
     2P 1a 1a 1a 1a 2b 1a 1a 1a 2g 1a 1a 2d 2g 1a 2f 2g
     3P 1a 2a 2b 2c 4a 2d 2e 2f 4b 2g 2h 4c 4d 2i 4e 4f

X.1      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
X.2      1 -1  1 -1  1  1 -1  1 -1  1 -1  1 -1  1 -1  1
X.3      1 -1  1 -1  1  1 -1  1 -1  1  1 -1  1 -1  1 -1
X.4      1 -1  1  1 -1  1 -1  1  1  1 -1  1 -1 -1  1 -1
X.5      1 -1  1  1 -1  1 -1  1  1  1  1 -1  1  1 -1  1
X.6      1  1  1 -1 -1  1  1  1 -1  1 -1 -1 -1  1  1  1
X.7      1  1  1 -1 -1  1  1  1 -1  1  1  1  1 -1 -1 -1
X.8      1  1  1  1  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1
X.9      2  .  2 -2  . -2  . -2  2  2  .  .  .  .  .  .
X.10     2  .  2  2  . -2  . -2 -2  2  .  .  .  .  .  .
X.11     2  . -2  .  . -2  .  2  .  2  .  .  . -2  .  2
X.12     2  . -2  .  . -2  .  2  .  2  .  .  .  2  . -2
X.13     2  . -2  .  .  2  . -2  .  2 -2  .  2  .  .  .
X.14     2  . -2  .  .  2  . -2  .  2  2  . -2  .  .  .
X.15     4 -2  .  .  .  .  2  .  . -4  .  .  .  .  .  .
X.16     4  2  .  .  .  . -2  .  . -4  .  .  .  .  .  .