Properties

Label 8T19
Order \(32\)
n \(8\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $C_2^3 : C_4 $

Related objects

Learn more about

Group action invariants

Degree $n$ :  $8$
Transitive number $t$ :  $19$
Group :  $C_2^3 : C_4 $
CHM label :  $E(8):4=[1/4.eD(4)^{2}]2$
Parity:  $1$
Primitive:  No
Generators:  (1,4)(2,7)(3,6)(5,8), (1,6,8,5)(2,7,3,4)
$|\Aut(F/K)|$:  $2$
Low degree resolvents:  
2: $C_2$ x 3
4: $C_4$ x 2, $V_4$
8: $D_4$ x 2, $C_4\times C_2$
16: $C_2^2:C_4$

Subfields

Degree 2: $C_2$

Degree 4: $D_4$

Low degree siblings

8T19, 8T20, 8T21, 16T33 x 2, 16T52, 16T53, 32T19
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1 $ $2$ $2$ $(4,6)(5,7)$
$ 4, 2, 1, 1 $ $4$ $4$ $(2,8)(4,5,6,7)$
$ 4, 2, 1, 1 $ $4$ $4$ $(2,8)(4,7,6,5)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,2)(3,8)(4,5)(6,7)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,2)(3,8)(4,7)(5,6)$
$ 2, 2, 2, 2 $ $1$ $2$ $(1,3)(2,8)(4,6)(5,7)$
$ 4, 4 $ $4$ $4$ $(1,4,2,5)(3,6,8,7)$
$ 4, 4 $ $4$ $4$ $(1,4,8,7)(2,5,3,6)$
$ 2, 2, 2, 2 $ $4$ $2$ $(1,4)(2,7)(3,6)(5,8)$
$ 4, 4 $ $4$ $4$ $(1,4,3,6)(2,7,8,5)$

Group invariants

Order:  $32=2^{5}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [32, 6]
Character table:  
      2  5  4  3  3  4  4  5  3  3  3  3

        1a 2a 4a 4b 2b 2c 2d 4c 4d 2e 4e
     2P 1a 1a 2a 2a 1a 1a 1a 2b 2b 1a 2d
     3P 1a 2a 4b 4a 2b 2c 2d 4d 4c 2e 4e

X.1      1  1  1  1  1  1  1  1  1  1  1
X.2      1  1 -1 -1  1  1  1 -1 -1  1  1
X.3      1  1 -1 -1  1  1  1  1  1 -1 -1
X.4      1  1  1  1  1  1  1 -1 -1 -1 -1
X.5      1 -1  A -A -1  1  1  A -A -1  1
X.6      1 -1 -A  A -1  1  1 -A  A -1  1
X.7      1 -1  A -A -1  1  1 -A  A  1 -1
X.8      1 -1 -A  A -1  1  1  A -A  1 -1
X.9      2  2  .  . -2 -2  2  .  .  .  .
X.10     2 -2  .  .  2 -2  2  .  .  .  .
X.11     4  .  .  .  .  . -4  .  .  .  .

A = -E(4)
  = -Sqrt(-1) = -i