Properties

Label 8T18
Order \(32\)
n \(8\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $V_4 \wr C_2 $

Related objects

Learn more about

Group action invariants

Degree $n$ :  $8$
Transitive number $t$ :  $18$
Group :  $V_4 \wr C_2 $
CHM label :  $E(8):E_{4}=[2^{2}]D(4)$
Parity:  $1$
Primitive:  No
Generators:   (1,5,3,7)(2,6,8,4), (1,5)(2,6)(3,7)(4,8), (1,6,2,5)(3,4,8,7)
$|\Aut(F/K)|$:  $4$
Low degree resolvents:  
2: 2T1, 2T1, 2T1, 2T1, 2T1, 2T1, 2T1
4: 4T2, 4T2, 4T2, 4T2, 4T2, 4T2, 4T2
8: 4T3, 4T3, 4T3, 4T3, 4T3, 4T3, 8T3
16: 8T9, 8T9, 8T9

Subfields

Degree 2: $C_2$

Degree 4: $D_4$, $D_4$, $D_4$

Low degree siblings

8T18b, 8T18c, 8T18d, 8T18e, 8T18f, 8T18g, 8T18h, 16T39a, 16T39b, 16T39c, 16T39d, 16T39e, 16T39f, 16T46
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1, 1 $ $2$ $2$ $(4,5)(6,7)$
$ 2, 2, 1, 1, 1, 1 $ $2$ $2$ $(4,6)(5,7)$
$ 2, 2, 1, 1, 1, 1 $ $2$ $2$ $(4,7)(5,6)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,2)(3,8)(4,5)(6,7)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,2)(3,8)(4,6)(5,7)$
$ 2, 2, 2, 2 $ $1$ $2$ $(1,2)(3,8)(4,7)(5,6)$
$ 2, 2, 2, 2 $ $2$ $2$ $(1,3)(2,8)(4,5)(6,7)$
$ 2, 2, 2, 2 $ $1$ $2$ $(1,3)(2,8)(4,6)(5,7)$
$ 2, 2, 2, 2 $ $4$ $2$ $(1,4)(2,7)(3,6)(5,8)$
$ 4, 4 $ $4$ $4$ $(1,4,2,7)(3,6,8,5)$
$ 4, 4 $ $4$ $4$ $(1,4,3,6)(2,7,8,5)$
$ 4, 4 $ $4$ $4$ $(1,4,8,5)(2,7,3,6)$
$ 2, 2, 2, 2 $ $1$ $2$ $(1,8)(2,3)(4,5)(6,7)$

Group invariants

Order:  $32=2^{5}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [32, 27]
Character table:  
      2  5  4  4  4  4  4  5  4  5  3  3  3  3  5

        1a 2a 2b 2c 2d 2e 2f 2g 2h 2i 4a 4b 4c 2j
     2P 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 2f 2h 2j 1a
     3P 1a 2a 2b 2c 2d 2e 2f 2g 2h 2i 4a 4b 4c 2j

X.1      1  1  1  1  1  1  1  1  1  1  1  1  1  1
X.2      1 -1 -1  1 -1 -1  1  1  1 -1 -1  1  1  1
X.3      1 -1 -1  1 -1 -1  1  1  1  1  1 -1 -1  1
X.4      1 -1  1 -1  1 -1  1 -1  1 -1  1 -1  1  1
X.5      1 -1  1 -1  1 -1  1 -1  1  1 -1  1 -1  1
X.6      1  1 -1 -1 -1  1  1 -1  1 -1  1  1 -1  1
X.7      1  1 -1 -1 -1  1  1 -1  1  1 -1 -1  1  1
X.8      1  1  1  1  1  1  1  1  1 -1 -1 -1 -1  1
X.9      2  .  .  2  .  .  2 -2 -2  .  .  .  . -2
X.10     2  .  . -2  .  .  2  2 -2  .  .  .  . -2
X.11     2 -2  .  .  .  2 -2  . -2  .  .  .  .  2
X.12     2  . -2  .  2  . -2  .  2  .  .  .  . -2
X.13     2  .  2  . -2  . -2  .  2  .  .  .  . -2
X.14     2  2  .  .  . -2 -2  . -2  .  .  .  .  2