Properties

Label 7T6
Order \(2520\)
n \(7\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No
Group: $A_7$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $7$
Transitive number $t$ :  $6$
Group :  $A_7$
CHM label :  $A7$
Parity:  $1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,4,5,6,7), (1,2,3)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

None

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

15T47 x 2, 21T33, 35T28, 42T294, 42T299

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 1, 1, 1 $ $105$ $2$ $(1,4)(2,7)$
$ 4, 2, 1 $ $630$ $4$ $(1,7,4,2)(5,6)$
$ 3, 3, 1 $ $280$ $3$ $(1,3,2)(4,7,5)$
$ 3, 1, 1, 1, 1 $ $70$ $3$ $(4,7,5)$
$ 3, 2, 2 $ $210$ $6$ $(1,6)(2,3)(4,5,7)$
$ 5, 1, 1 $ $504$ $5$ $(1,7,2,6,3)$
$ 7 $ $360$ $7$ $(1,7,5,4,2,3,6)$
$ 7 $ $360$ $7$ $(1,6,3,2,4,5,7)$

Group invariants

Order:  $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table:   
     2  3  .  .  3  2  .  .  2  2
     3  2  .  .  1  .  .  2  2  1
     5  1  .  .  .  .  1  .  .  .
     7  1  1  1  .  .  .  .  .  .

       1a 7a 7b 2a 4a 5a 3a 3b 6a
    2P 1a 7a 7b 1a 2a 5a 3a 3b 3b
    3P 1a 7b 7a 2a 4a 5a 1a 1a 2a
    5P 1a 7b 7a 2a 4a 1a 3a 3b 6a
    7P 1a 1a 1a 2a 4a 5a 3a 3b 6a

X.1     1  1  1  1  1  1  1  1  1
X.2     6 -1 -1  2  .  1  .  3 -1
X.3    10  A /A -2  .  .  1  1  1
X.4    10 /A  A -2  .  .  1  1  1
X.5    14  .  .  2  . -1 -1  2  2
X.6    14  .  .  2  . -1  2 -1 -1
X.7    15  1  1 -1 -1  .  .  3 -1
X.8    21  .  .  1 -1  1  . -3  1
X.9    35  .  . -1  1  . -1 -1 -1

A = E(7)^3+E(7)^5+E(7)^6
  = (-1-Sqrt(-7))/2 = -1-b7