Properties

Label 44T7
Order \(88\)
n \(44\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_4\times D_{11}$

Learn more about

Group action invariants

Degree $n$ :  $44$
Transitive number $t$ :  $7$
Group :  $C_4\times D_{11}$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,18,35,6,23,39,12,26,44,16,31,4,20,34,8,21,38,10,27,42,13,30,2,17,36,5,24,40,11,25,43,15,32,3,19,33,7,22,37,9,28,41,14,29), (1,6,2,5)(3,7,4,8)(9,43,10,44)(11,42,12,41)(13,40,14,39)(15,37,16,38)(17,35,18,36)(19,34,20,33)(21,31,22,32)(23,29,24,30)(25,28,26,27)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $C_4\times C_2$
22:  $D_{11}$
44:  $D_{22}$

Resolvents shown for degrees $\leq 29$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$

Degree 11: $D_{11}$

Degree 22: $D_{22}$

Low degree siblings

There are no siblings with degree $\leq 29$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $11$ $2$ $( 5,41)( 6,42)( 7,44)( 8,43)( 9,40)(10,39)(11,38)(12,37)(13,36)(14,35)(15,33) (16,34)(17,29)(18,30)(19,31)(20,32)(21,26)(22,25)(23,28)(24,27)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $11$ $2$ $( 1, 2)( 3, 4)( 5,42)( 6,41)( 7,43)( 8,44)( 9,39)(10,40)(11,37)(12,38)(13,35) (14,36)(15,34)(16,33)(17,30)(18,29)(19,32)(20,31)(21,25)(22,26)(23,27)(24,28)$
$ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ $1$ $4$ $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)(17,20,18,19)(21,23,22,24) (25,27,26,28)(29,32,30,31)(33,36,34,35)(37,40,38,39)(41,43,42,44)$
$ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ $11$ $4$ $( 1, 3, 2, 4)( 5,43, 6,44)( 7,41, 8,42)( 9,38,10,37)(11,39,12,40)(13,34,14,33) (15,36,16,35)(17,32,18,31)(19,29,20,30)(21,28,22,27)(23,25,24,26)$
$ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ $1$ $4$ $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)(17,19,18,20)(21,24,22,23) (25,28,26,27)(29,31,30,32)(33,35,34,36)(37,39,38,40)(41,44,42,43)$
$ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ $11$ $4$ $( 1, 4, 2, 3)( 5,44, 6,43)( 7,42, 8,41)( 9,37,10,38)(11,40,12,39)(13,33,14,34) (15,35,16,36)(17,31,18,32)(19,30,20,29)(21,27,22,28)(23,26,24,25)$
$ 44 $ $2$ $44$ $( 1, 5,12,15,20,22,27,29,36,39,43, 4, 7,10,14,17,23,25,31,33,38,41, 2, 6,11, 16,19,21,28,30,35,40,44, 3, 8, 9,13,18,24,26,32,34,37,42)$
$ 44 $ $2$ $44$ $( 1, 6,12,16,20,21,27,30,36,40,43, 3, 7, 9,14,18,23,26,31,34,38,42, 2, 5,11, 15,19,22,28,29,35,39,44, 4, 8,10,13,17,24,25,32,33,37,41)$
$ 11, 11, 11, 11 $ $2$ $11$ $( 1, 7,11,13,20,23,28,32,36,38,44)( 2, 8,12,14,19,24,27,31,35,37,43) ( 3, 5,10,16,18,22,25,30,34,39,41)( 4, 6, 9,15,17,21,26,29,33,40,42)$
$ 22, 22 $ $2$ $22$ $( 1, 8,11,14,20,24,28,31,36,37,44, 2, 7,12,13,19,23,27,32,35,38,43) ( 3, 6,10,15,18,21,25,29,34,40,41, 4, 5, 9,16,17,22,26,30,33,39,42)$
$ 44 $ $2$ $44$ $( 1, 9,19,25,36,42, 8,16,23,29,37, 3,11,17,27,34,44, 6,14,22,32,40, 2,10,20, 26,35,41, 7,15,24,30,38, 4,12,18,28,33,43, 5,13,21,31,39)$
$ 44 $ $2$ $44$ $( 1,10,19,26,36,41, 8,15,23,30,37, 4,11,18,27,33,44, 5,14,21,32,39, 2, 9,20, 25,35,42, 7,16,24,29,38, 3,12,17,28,34,43, 6,13,22,31,40)$
$ 11, 11, 11, 11 $ $2$ $11$ $( 1,11,20,28,36,44, 7,13,23,32,38)( 2,12,19,27,35,43, 8,14,24,31,37) ( 3,10,18,25,34,41, 5,16,22,30,39)( 4, 9,17,26,33,42, 6,15,21,29,40)$
$ 22, 22 $ $2$ $22$ $( 1,12,20,27,36,43, 7,14,23,31,38, 2,11,19,28,35,44, 8,13,24,32,37) ( 3, 9,18,26,34,42, 5,15,22,29,39, 4,10,17,25,33,41, 6,16,21,30,40)$
$ 11, 11, 11, 11 $ $2$ $11$ $( 1,13,28,38, 7,20,32,44,11,23,36)( 2,14,27,37, 8,19,31,43,12,24,35) ( 3,16,25,39, 5,18,30,41,10,22,34)( 4,15,26,40, 6,17,29,42, 9,21,33)$
$ 22, 22 $ $2$ $22$ $( 1,14,28,37, 7,19,32,43,11,24,36, 2,13,27,38, 8,20,31,44,12,23,35) ( 3,15,25,40, 5,17,30,42,10,21,34, 4,16,26,39, 6,18,29,41, 9,22,33)$
$ 44 $ $2$ $44$ $( 1,15,27,39, 7,17,31,41,11,21,35, 3,13,26,37, 5,20,29,43,10,23,33, 2,16,28, 40, 8,18,32,42,12,22,36, 4,14,25,38, 6,19,30,44, 9,24,34)$
$ 44 $ $2$ $44$ $( 1,16,27,40, 7,18,31,42,11,22,35, 4,13,25,37, 6,20,30,43, 9,23,34, 2,15,28, 39, 8,17,32,41,12,21,36, 3,14,26,38, 5,19,29,44,10,24,33)$
$ 44 $ $2$ $44$ $( 1,17,35, 5,23,40,12,25,44,15,31, 3,20,33, 8,22,38, 9,27,41,13,29, 2,18,36, 6,24,39,11,26,43,16,32, 4,19,34, 7,21,37,10,28,42,14,30)$
$ 44 $ $2$ $44$ $( 1,18,35, 6,23,39,12,26,44,16,31, 4,20,34, 8,21,38,10,27,42,13,30, 2,17,36, 5,24,40,11,25,43,15,32, 3,19,33, 7,22,37, 9,28,41,14,29)$
$ 22, 22 $ $2$ $22$ $( 1,19,36, 8,23,37,11,27,44,14,32, 2,20,35, 7,24,38,12,28,43,13,31) ( 3,17,34, 6,22,40,10,26,41,15,30, 4,18,33, 5,21,39, 9,25,42,16,29)$
$ 11, 11, 11, 11 $ $2$ $11$ $( 1,20,36, 7,23,38,11,28,44,13,32)( 2,19,35, 8,24,37,12,27,43,14,31) ( 3,18,34, 5,22,39,10,25,41,16,30)( 4,17,33, 6,21,40, 9,26,42,15,29)$
$ 44 $ $2$ $44$ $( 1,21,43,18,38,15,35,10,32, 6,27, 3,23,42,19,39,13,33,12,30, 7,26, 2,22,44, 17,37,16,36, 9,31, 5,28, 4,24,41,20,40,14,34,11,29, 8,25)$
$ 44 $ $2$ $44$ $( 1,22,43,17,38,16,35, 9,32, 5,27, 4,23,41,19,40,13,34,12,29, 7,25, 2,21,44, 18,37,15,36,10,31, 6,28, 3,24,42,20,39,14,33,11,30, 8,26)$
$ 11, 11, 11, 11 $ $2$ $11$ $( 1,23,44,20,38,13,36,11,32, 7,28)( 2,24,43,19,37,14,35,12,31, 8,27) ( 3,22,41,18,39,16,34,10,30, 5,25)( 4,21,42,17,40,15,33, 9,29, 6,26)$
$ 22, 22 $ $2$ $22$ $( 1,24,44,19,38,14,36,12,32, 8,28, 2,23,43,20,37,13,35,11,31, 7,27) ( 3,21,41,17,39,15,34, 9,30, 6,25, 4,22,42,18,40,16,33,10,29, 5,26)$

Group invariants

Order:  $88=2^{3} \cdot 11$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [88, 4]
Character table: Data not available.